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Maple explorations, perfect numbers, and Mersenne primes
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(Received 1 April 2004)

Some examples from different areas of mathematics are explored to give a
working knowledge of the computer algebra system Maple. Perfect numbers and
Mersenne primes, which have fascinated people for a very long time and continue
to do so, are studied using Maple and some questions are posed that still await
answers.

1. Maple explorations

Maple [1] is a computer algebra system known for its ease of use and its full coverage
of different subjects of the sciences. It can save its user time and frustration in
calculation not to mention the fact that it gives exact values (not approximate
values). The author prefers Maple to other systems but this does not come from
bias but rather from experience. As a matter of fact, Maple competes in this respect
with more specialized computer algebra systems like MATLAB (short for Matrix
Laboratory), as the following example shows (Maple commands are preceded by >
and always end with;):

> A :¼ matrix([[1, 2], [3, 4]]);

A :¼
1 2
3 4

� �

> evalm(A^20);

95799031216999 139620104992450
209430157488675 305229188705674

� �
:

Notice that Maple computes exactly the 20th power of the matrix, which gives Maple
superiority over MATLAB, which gives only an approximate computation.

The author, as many others, feels that the best way to learn Maple is by doing
and therefore we choose a few examples to become familiar with a number of Maple
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commands, and we introduce each of these commands with only a brief description.
The reader can then pursue this as needed.

Exact simplification:

> 1=6þ 1=7;
13

42

An approximation of � to 20 decimal places:

> evalf ðPi, 20Þ;
3:1415926535897932385

(the command ‘evalf ’ stands for ‘evaluate using floating-point arithmetic’ which
evaluates � numerically).

Solving equations in a complex variable:

> solveðz ^ 3 ¼ 1Þ;

1, �
1

2
þ
1

2

ffiffiffi
3
p

I , �
1

2
�
1

2

ffiffiffi
3
p

I

The absolute value of (in this case a complex number):

> absð2þ 3 � IÞ;ffiffiffiffiffi
13
p

Division of complex numbers:

> ð13� 2 � IÞ=ð2þ 3 � IÞ;
20

13
�
43

13
I

The sum of cubes of all integers from 1 to 123456789:

> S :¼ sumðk ^ 3, k ¼ 1 . . . 123456789Þ;
S ¼ 58076431640403000742495567559025

Factor the preceding number:

> ifactorðSÞ;
ð3Þ4ð5Þ2ð37Þ2ð3803Þ2ð3607Þ2ð333667Þ2

(the command ‘ifactor’ stands for ‘integer factorization’).

Sum of the first 50 odd integers:

> sumð2 � kþ 1, k ¼ 0 . . . 49Þ;
2500

Product of the first 50 odd integers:

> productð2 � kþ 1, k ¼ 0 . . . 49Þ;
2725392139750729502980713245400918633290
796330545803413734328823443106201171875
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Isprime function-primality testing

The function isprime is a probabilistic primality testing routine. It returns false if n is
shown to be composite within one strong pseudo-primality test and one Lucas test
and returns true otherwise. If isprime returns true, then n is ‘very probably’ prime
[2, Section 4.5.4, Algorithm P]. No counter example is known and it has been
conjectured that such a counter example must be hundreds of digits long.

> isprimeð139Þ;
true

> isprimeð2317Þ;
false

We can find the prime number just previous to a given composite number:

> prevprimeð100Þ;
97

We can let Maple list for us the first 50 prime numbers:

> s:¼NULL: for i to 50 do s:¼s,ithprime(i)od:s;
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131,
137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197,
199, 211, 223, 227, 229

Generating Bernoulli numbers:
> bernoullið4Þ;

�
1

30

Factoring expressions:

> E :¼ x ^ 6� y ^ 6;

E :¼ x6 � y6

> factorðEÞ;

ðx� yÞðxþ yÞðx2 þ xyþ y2Þðx2 � xyþ y2Þ

> factorðx12 � 1Þ;

ðx� 1Þðxþ 1Þðx2 þ xþ 1Þðx2 � xþ 1Þðx2 þ 1Þðx4 � x2 þ 1Þ

Infinite sums:

> sumð1=k ^ 2, k ¼ 1 . . . infinityÞ;
1=6�2

> sumð1=k ^ 4, k ¼ 1 . . . infinityÞ;
1=90�4

> sumð1=k ^ 3, k ¼ 1 . . . infinityÞ;
�ð3Þ

Finding limits:
> L :¼ sinðxÞ=x;

L :¼
sinðxÞ

x
> limitðL, x ¼ 0Þ;

1
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Derivatives:

> diff ðcosðxÞ, xÞ;
� sinðxÞ

Differential equations:

> dsolveðdiff ð f ðxÞ, x$2Þ � f ðxÞ ¼ 0, f ðxÞÞ;
f ðxÞ ¼ C1e

x þ C2e
�x

Integrals:

> intð1=ðx ^ 4þ 1Þ, xÞ;

1

8

ffiffiffi
2
p

ln
x2 þ x

ffiffiffi
2
p
þ 1

x2 � x
ffiffiffi
2
p
þ 1

 !
þ
1

4

ffiffiffi
2
p

arctanðx
ffiffiffi
2
p
þ 1Þ þ

1

4

ffiffiffi
2
p

arctanðx
ffiffiffi
2
p
� 1Þ

Solving equations:

> solveðx ^ 2þ x� 5 ¼ 0, xÞ;

�
1

2
þ
1

2

ffiffiffiffiffi
21
p

, �
1

2
�
1

2

ffiffiffiffiffi
21
p

Finding eigenvalues:

> withðlinalgÞ :

> A :¼ matrixð4, 4, ½1,�2, 4, 2,�2, 1, 4, 2, 0,�2, 5, 2,�2,�2, 4, 5�Þ;

A ¼

1 �2 4 2

�2 1 4 2

0 �2 5 2

�2 �2 4 5

2
6664

3
7775

> eigenvalsðAÞ;

1, 5, 3, 3

Finding a basis:

> basisðvector½1,�2, 0,�2�, vector½�2, 1,�2,�2�Þ, vector½4, 4, 5, 4�, vector½2, 2, 2, 5�Þ;
½2, 2, 2, 5�, ½4, 4, 5, 4�, ½�2, 1,�2,�2�, ½1,�2, 0,�2�

Finding the inverse of a matrix:

> P :¼ matrixð4, 4, ½½1, 1, 0, 1�, ½1, 1, 1, 1�, ½1, 0, 0, 1�, ½1, 1, 1, 0��Þ;

P ¼

1 1 0 1

1 1 1 1

1 0 0 1

1 1 1 0

2
6664

3
7775

> Q :¼ inverseðPÞ;

Q ¼

0 �1 1 1

1 0 �1 0

�1 1 0 0

0 1 0 �1

2
6664

3
7775
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Determinants and solutions of equations:

> withðlinalgÞ :

> A :¼ matrixð3, 3, ½½3, 0, 1�, ½6, 1, 1�, ½9, 0, 7��Þ;

A ¼

3 0 1

6 1 1

9 0 7

2
64

3
75

> B :¼ matrixð3, 3, ½½1, 2, 1�, ½3, 4, 3�, ½�4, � 2, � 4��Þ;

B ¼

1 2 1

3 4 3

�4 �2 �4

2
64

3
75

> detðAÞ;

12

> detðBÞ;

0

> detðAþ x � IÞ;

12þ 22xþ 11x2 þ x3

> detðAþ x � BÞ;

12� 34xþ 14x2

> detðx � IÞ;

x3

> detðAÞ þ detðx � IÞ;

12þ x3

> detðAþ x � IÞ ¼ detðAÞ þ detðx � IÞ;

12þ 22xþ 11x2 þ x3 ¼ 12þ x3

> eq1 :¼ detðAþ x � IÞ ¼ detðAÞ þ detðx � IÞ;

eq1 :¼ 12þ 22xþ 11x2 þ x3 ¼ 12þ x3

> sols1 :¼ solveðeq1, xÞ;

sols1 :¼ 0, � 2

> detðx � BÞ;

0

> eq2 :¼ detðAþ x � BÞ ¼ detðAÞ þ detðx � BÞ;

eq2 :¼ 12� 34xþ 14x2 ¼ 12

> sols2 :¼ solveðeq2, xÞ;

sols2 :¼ 0, 17=7

> x � detðIÞ;

x

> eq3 :¼ detðAþ x � IÞ ¼ detðAÞ þ x � detðIÞ;

eq3 :¼ 12þ 22xþ 11x2 þ x3 ¼ 12þ x

> sols3 :¼ solveðeq3, xÞ;

sols3 :¼ 0,
�11

2
�
1

2

ffiffiffiffiffi
37
p

,
�11

2
þ
1

2

ffiffiffiffiffi
37
p
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> eq4 :¼ detðAþ x � BÞ ¼ detðAÞ þ x � detðBÞ;

eq4 :¼ 12� 34xþ 14x2 ¼ 12

> sols4 :¼ solveðeq4,xÞ;

sols4 :¼ 0, 17=7

> eq5 :¼ detðAþ x � IÞ ¼ 0;

eq5 :¼ 12þ 22xþ 11x2 þ x3 ¼ 0

> sols5 :¼ solveðeq5,xÞ;

sols5 :¼ �1, � 5þ
ffiffiffiffiffi
13
p

, � 5�
ffiffiffiffiffi
13
p

> P :¼ inverseðAþ IÞ;

P ¼

8

23
0
�1

23
�39

46

1

2

1

23
�9

23
0

4

23

2
6666664

3
7777775

> eq6 :¼ detðAþ x � BÞ ¼ 0;

eq6 :¼ 12� 34xþ 14x2 ¼ 0

> sols6 :¼ solveðeq6,xÞ;

sols6 :¼ 2, 3=7

2. Results

Mersenne primes are prime numbers of the form 2p � 1, where p is also prime. The
largest known Mersenne prime at the time of writing (the 42nd one corresponding to
p� 25964951) has 7816230 digits. To see this, note that the number 225964951 � 1 has
the same number of digits as 225964951 because their difference is 1. Thus we only
compute the number of digits of 225964951. If a positive integer n is of the form n ¼ 10x

and with ½x� denoting the greatest integer function, we have 10x4n < 10½x�þ1 and
therefore the number n has [x]þ 1 digits. Thus 225964951 ¼ 1025964951 log10 2 and we have
7816229 < 25964951 log10 2 < 7816230: Therefore the number 225964951 � 1 has
7816230 digits.

Theorem 1.
P

1=ð2p � 1Þ <1, where 2p � 1 is prime. That is, the sum of the
reciprocals of Mersenne primes is finite.

Proof. Suppose 2p � 1 is a prime number. Since 2p � 1 > 2p�1 for all primes p,P
1=ð2p � 1Þ <

P
1=ð2p�1Þ <

P1
n¼1 1=2

n ¼ 1:

If Mp denotes the Mersenne prime 2p � 1, then
P

1=Mp < 1. Thus the canonical
product

Q
ð1� z=MpÞ is an entire function. Moreover, if the number of Mersenne

primes was finite, then
Q
ð1� z=MpÞ would be a real polynomial and thus of order 0.

Consequently, if
Q
ð1� z=MpÞ has a non-zero order, then the number of Mersenne

primes is infinite. We shall say something about the order of
Q
ð1� z=MpÞ in the next

theorem:

Theorem 2. (see [3] for similar results). The order of
Q
ð1� z=MpÞ is 41.

Proof. Let a > 1. Since Ma
p >Mp,

P
1=Ma

p <1. Thus
P

1=Ma
p <1 for a5 1.

Therefore, the smallest positive integer a for which
P

1=Ma
p <1 is 1 and
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consequently the genus of the zeros of
Q
ð1� z=MpÞ is 0: This together with the

Hadamard factorization theorem shows that the genus of
Q
ð1� z=MpÞ is also 0.

So
Q
ð1� z=MpÞ is of exponential type 0: In particular, since

Q
ð1� z=MpÞ is of

exponential type, it is of order 41.
There are 41 known Mersenne primes at the time of writing. The values of the

primes p such that 2p � 1 is a prime follow:

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253,
4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049,
216091, 756839, 858433, 1257787, 1398269, 2976221, 3021377, 6972593,
13466917, 20996011, 24036583; 25964951:

We can augment our Maple explorations to include Mersenne primes. We can,
for instance, invoke the help session about Mersenne primes in Maple by using the
command:

> ?mersenne

We can load up the Number Theory package by using the command:

> withðnumtheoryÞ :

Notice that the colon : is used instead of the semi-colon ; because the latter will list all
the functions in number theory.

Here are some examples:
Choose 127 and test it to see if it is a prime:

> isprimeð127Þ;
true

Suppose now that we want to test to see if 127 is a Mersenne prime:

> numtheory½mersenne�ð3Þ;
7

> numtheory½mersenne�ð5Þ;
31

> numtheory½mersenne�ð7Þ;
127

so it is.
We can try to find other Mersenne primes:

> numtheory½mersenne�ð11Þ;

false

> numtheory½mersenne�ð13Þ;

8191

> numtheory½mersenne�ð107Þ;

162259276829213363391578010288127

Perfect numbers have fascinated people for a very long time and continue to do so.
In this paper, we look at some of their interesting properties and mention some
questions that still await answers. Each Mersenne prime generates a ‘perfect’
number.
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A natural number is called ‘perfect’ if it is equal to the sum of its positive divisors,
excluding itself. Only the first four perfect numbers 6, 28, 496, and 8128 were known
to the ancient Greeks; Nicomachus in his Introductio Arithmeticae lists them and
conjectures that the nth perfect number contains exactly n digits. His conjecture is
false because the next perfect number is 33550336.

We can augment our Maple explorations to include perfect numbers. Let us find
the divisors of 28:

> d :¼ divisorsð28Þ;
d :¼ f1, 2, 4, 7, 14, 28g

Now let us sum the (proper) divisors of 28:

> sumðd½0i0�, 0i0 ¼ 1::5Þ;
28

so 28 is perfect.
To appreciate what Maple can help us do, let us choose a much bigger number—

33550336, say—and find its (proper) divisors:

> s :¼ divisorsð33550336Þ;
s :¼ f1, 2, 4, 8, 16, 32, 64, 128, 8191, 1024, 2048, 4096,
256, 16382, 32764, 65528, 524224, 262112, 1048448, 16775168,
8387584, 4193792, 512, 131056, 2096896, 33550336g

Now let us sum the (proper) divisors of 33550336:

> sumðs½0i0�, 0i0 ¼ 1 . . . 25Þ;
33550336

so 33550336 is perfect.

The first breakthrough about perfect numbers came about when Euclid proved
in his Elements, Book IX, Proposition 36 that if 2p � 1 is a prime number, then
2p�1ð2p � 1Þ is a perfect number. It took approximately 2000 years for the second
breakthrough to come about when Euler proved that all even perfect numbers must
be of the form indicated by Euclid. An old unsolved problem in mathematics is
whether or not an odd perfect number exists. Brent, Cohen and Te Riele [4] have
shown that there is no odd perfect number below 10300. Moreover, Hagis [5] has
shown (his announcement of this result [6] came a few years earlier in 1975) that an
odd perfect number must have at least 8 prime factors. Furthermore, Heath-Brown
[7] has shown that if n is an odd perfect number with at most k prime factors, then
n < 44

k

.
The number theoretic function �ðnÞ denotes the sum of positive divisors of a

natural number n (including itself). Therefore, the sum of the positive divisors
of n excluding itself is �ðnÞ � n. It follows that a number is perfect if �ðnÞ ¼ 2n. This
will be used later in the paper.

Theorem 3. (Euclid). If 2p � 1 is a prime number, then 2p�1ð2p � 1Þ is a perfect
number.

Proof. If 2p � 1 ¼ q is a prime number, then the only possible divisors of
2p�1ð2p � 1Þ are:

1 and 2p � 1; 2 and 2ð2p � 1Þ; 22 and 22ð2p � 1Þ; � � � ; 2p�1 and 2p�1ð2p � 1Þ
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whose sum is

½1þ 2þ 22 þ � � � þ 2p�1�½1þ ð2p � 1Þ� ¼ ð2p � 1Þ2p

Thus the sum without 2p�1ð2p � 1Þ itself is

ð2p � 1Þ2p � 2p�1ð2p � 1Þ ¼ ð2p � 1Þ2p�1ð2� 1Þ ¼ 2p�1ð2p � 1Þ

The converse is also true:

Theorem 4. (Euler). If n is an even perfect number, then n ¼ 2p�1ð2p � 1Þ for some
prime number p, and 2p � 1 is also a prime number.

Proof. We can write the even number n as n ¼ 2k�1d, where k is a natural number
52 and d is an odd number. Let S denote the sum of positive divisors of d. The only
positive divisors of n are the divisors of d, their doubles, . . . , their multiples of 2k�1.
Since we know further that n is perfect, we get

n ¼ 2k�1d ¼ ð1þ 2þ � � � þ 2k�1ÞS � n

or

2n ¼ 2kd ¼ ð2k � 1ÞS

Thus

S ¼ d þ
d

2k � 1
Since S and d are integers, d=ð2k � 1Þ must also be an integer. Thus ð2k � 1Þ=d and
d=ð2k � 1Þ must be among the divisors of d. There can be only two divisors of d,
namely d itself and d=ð2k � 1Þ. But 1 is a divisor of d and hence d ¼ 2k � 1: Thus
2k � 1 has no other positive divisors and consequently 2k � 1 is a prime number.

Accordingly the problem of finding even perfect numbers is the same as the
problem of determining primes p such that 2p � 1 is also prime.

Let Mp denote the Mersenne prime 2p � 1. By Theorem 1,
P

1=Mp < 1. Thus the
following theorem follows immediately:

Theorem 5. The sum of the reciprocals of perfect numbers is finite.

Theorem 6. Suppose n ¼ 2p�1ð2p � 1Þ is a perfect number, then 1þ 2þ � � � þ
ð2p � 1Þ ¼ n. That is, an even perfect number is an arithmetic progression sum
ending with the corresponding Mersenne prime.

Proof. If S ¼ 1þ 2þ � � � þ k, then S ¼ kðkþ 1Þ=2. Thus

1þ 2þ � � � þ ð2p � 1Þ ¼ ð2p � 1Þð2pÞ=2 ¼ 2p�1ð2p � 1Þ

Theorem 7. Every even perfect number (except 6) is of the form 13 þ 33þ
53 þ � � � þ ð2k � 1Þ3, where k is an integer 52. That is, an even perfect number
(except 6) is a sum of consecutive odd cubes.

Proof. For all integers k5 2 we have:

13 þ 33 þ 53 þ � � � þ ð2k � 1Þ3

¼ 13 þ 23 þ 33 þ � � � þ ð2k � 2Þ3 þ ð2k � 1Þ3 � ½23 þ 43 þ � � � þ ð2k � 2Þ3�

¼ ½2k�1ð2k � 1Þ�2 � 23½2k�2ð2k�1 � 1Þ�2

¼ ½2k�1ð2k � 1Þ�2 � 2½2k�1ð2k�1 � 1Þ�2

¼ 22k�2½ð2k � 1Þ2 � 2ð2k�1 � 1Þ2�
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¼ 22k�2½22k � 22k�1 � 1�

¼ 22k�2ð2:22k�1 � 22k�1 � 1Þ

¼ 22k�2ð22k�1 � 1Þ

Now let n be any even perfect number different from 6: Then n ¼ 2p�1ð2p � 1Þ

for some odd prime p. Letting k ¼ ðpþ 1Þ=2 we get 13 þ 33 þ � � � þ

ð2ðpþ1Þ=2 � 1Þ3 ¼ 2p�1½2p � 1� ¼ n which is the desired result.

Theorem 8. The sum of the reciprocals of all positive divisors of a perfect number

is always 2:

Proof. Let n be a perfect number. We will show that
P

1=d ¼ 2 over the positive

divisors d of n. Clearly �ðnÞ ¼ �ðn=dÞ. Thus ð1=nÞ�ðnÞ ¼
P

1=d. Consequently,P
1=d ¼ 2n=2 ¼ 2. This completes the proof.

Theorem 9. [8] 28 is the only perfect number of the form nnþ 1, where n is a positive

integer.

Theorem 10. All even perfect numbers end in 6 or 8:

Proof. It is well known that every integer is congruent (mod m) to one of

0, 1, . . . ,m� 1: In particular, an integer is congruent(mod 10) to one of 0, 1, . . . , 9

and moreover an even integer is congruent (mod 10) to one of 1, 3, 5, 7, 9: Now

an even perfect number n ¼ 2p�1ð2p � 1Þ has the following possibilities for p:

p ¼ 2, p ¼ 5, and p congruent to 1, 3, 7, or 9 (mod 10) and these cases can

easily be shown to give an even perfect number ending in 6, 6, 6, 6, 6, and 8

respectively.

Remark. It is worth mentioning that the previous theorem cannot be pushed further

to state that even perfect numbers should alternate between 6 and 8 because (like the

fifth perfect number) the sixth one is 217�1ð217 � 1Þ ¼ 8589869056 which also ends

with a 6:

Theorem 11. An even perfect number n (except 6) is congruent to 1 (mod 9).

Proof. By Theorem 4, n ¼ 2p�1ð2p � 1Þ, where 2p � 1 is prime.

Case 1. p¼ 3: Clearly n ¼ 28 is congruent to 1 (mod 9).

Case 2. p 5 5 (with 2p � 1 prime): As in the proof of Theorem 11, we see that

p is congruent to 1 or 5 (mod 6). Due to the similarity in the proof of the two cases,

we only consider the case p ¼ 1þ 6k, for some natural number k. Thus

2p�1 ¼ 26k ¼ ð26Þk which is congruent to 1 (mod 9), say 2p�1 ¼ 1þ 9L for some

natural number L. So 2p � 1 is also congruent to 1 (mod 9) and consequently n

is congruent to 1 (mod 9).

Theorem 12. An even perfect number n (except 6) is congruent to 4 (mod 6).

Proof. By Theorem 4, n ¼ 2p�1ð2p � 1Þ where 2p � 1 is prime. As in the proof of

Theorem 11, p is congruent to 1 or 5 (mod 6). In both cases it is easy to see that 2p�1

is congruent to 1 (mod 3). Thus for odd prime numbers p there are odd natural

numbers k such that 2p�1 ¼ 1 þ 3k. Therefore n ¼ 1þ 9kþ 18k2 ¼ 4� 3þ 9kþ

18k2 ¼ 4þ 3ð6k2 þ 3k� 1). Since k is odd, it is clear that 6k2 and 3k� 1 are even.
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Theorem 13. [9, corollary, p. 232]. If an odd perfect number exists, then it is
congruent to 1 (mod 4).

Theorem 14. The pair 5 and 7 is the only pair of twin primes (primes that differ by 2)
whose sum divided by 2 is a perfect number.

Proof. Clearly the pair 5 and 7 satisfies the above property.
If p is a prime > 5 with pþ 2 prime, then p is congruent to 5 (mod 6) (clearly, the
case p congruent to 1 (mod 6) is ruled out here for otherwise pþ 2 would not be a
prime number). That is, p ¼ 5 þ 6k for some natural number k. Then m is a natural
number > 1, with ðpþ ðpþ 2ÞÞ=2 ¼ p þ 1 ¼ 6m which is not a perfect number.

3. Unsolved problems with comments

(1) Are there infinitely many perfect numbers? or equivalently:
Are there infinitely many Mersenne prime numbers?
From the proof of Theorem 2 we see that

Q
ð1� z=MpÞ has genus 0 which,

in turn, implies that
Q
ð1� z=MpÞ is of order 41. Can one use the fact thatQ

ð1� z=MpÞ is of genus 0 more effectively to obtain a sharper result on the order
of
Q
ð1� z=MpÞ? More precisely, if one could show that the order of

Q
ð1� z=MpÞ is

non-zero, that would imply that there are infinitely many Mersenne prime numbers.
(2) Is there an odd perfect number?

Ore [9] considered the harmonic mean H(n) of a natural number n defined by
1=HðnÞ ¼ 1=�ðnÞ �

P
ð1=dÞ over the positive divisors d of n with �(n) denoting the

numbers of such divisors. Now

HðnÞ ¼
�ðnÞP
ð1=dÞ

¼
n�ðnÞ

�ðnÞ
:

Thus for a perfect number n, H(n) is an integer (clearly here HðnÞ ¼ �ðnÞ=2): if n is
even, then n ¼ 2p�1ð2p � 1Þ has �ðnÞ ¼ 2p and thus HðnÞ ¼ p is an integer. If n is odd,
then by a corollary [10, p. 232] of another result of Euler we have n ¼ ptk2, where p
is a prime not dividing k and p and t are congruent to 1 (mod 4); that is n ¼ p4gþ1k2

for some integer g and p an odd prime. So �(n) is also even in this case because the
p-exponent is odd.

Based on some numerical computations [9], Ore conjectures that a number with
integral harmonic mean of divisors must be even. If Ore’s Conjecture is true, then
that would imply that there are no odd perfect numbers (Ore verified his conjecture
for n < 104. Mills [11] verified Ore’s Conjecture for n < 107 as well as when all prime-
power factors of n are < 655512. Finally, Pomerance (see for example [12, p. 84])
showed that if the number of distinct prime factors of a perfect number n is at most
2 and H(n) is an integer, then n is even).
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