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Abstract� The Twin Prime Conjecture states that the number of twin primes
is in�nite� Many attempts to prove or disprove the conjecture have failed� The
objective of this note is to tie the Twin Prime Conjecture to complex variable
theory and prove some results that make it possible to consider the conjecture from
a complex variable viewpoint rather than from a purely number theoretic one�

�� Introduction� Prime numbers di�ering by � are called twin primes�
Whether twin primes are �nite or in�nite in number is one of the most famous
problems in number theory� Brun ��� showed that
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known as Brun�s Constant B	 has been calculated by Shanks and Wrench ��� and
by Brent �� to be approximately ���������� This paper originated from an idea
where the author related the Twin Prime Conjecture to complex variable theory in
the following way� Since B ��	 the canonical product
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is an entire function ���� Moreover	 if the number of twin primes was �nite	 then
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would be a real polynomial and thus of order � ���� Consequently	 if
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has a nonzero order	 then the number of twin primes is in�nite� We shall say
something about the order of
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later in this paper�
�� Results� Suppose fpng is a sequence of positive numbers �the sequence

may be �nite�� For in�nite sequences we suppose further that
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n�� is a �nite sequence	 then the corresponding convergence condition that
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converges is clear�� Finally	 let A �
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is an entire function ���� We can now state the following theorem�
Theorem �� Let fpng be a sequence such that
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is an entire function ���� Let a � �� Since pan � pn	
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Hadamard Factorization Theorem and Boas ���	 the genus of
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From Young ���	
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is of exponential type	 it is of order k � ��
We now consider two cases�
Case �� k � �� Since the order of eAz is �	 it follows from Levin ��� that

Y
n

�
��

z

pn

�
ez�pn � eAz

Y
n

�
��

z

pn

�

is ��
Case �� k � �� Since the de�nition of type and exponential type agree for

functions of order �	 the type of
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Thus	 from Levin ���	 the order of
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is �� The proof of Theorem � is complete�
We now extend our functions to the class of meromorphic functions �for the

de�nition of the order of a meromorphic function and its consistency with that of
the order of an entire function see	 for instance	 �����

The following result is a Corollary of Theorem ��
Corollary� Let fpng be a sequence such that
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By Theorem �	 f�z� is of order �� Moreover

log f�z� � Az 
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Di�erentiating with respect to z we get
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To get a contradiction	 suppose that
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is of order greater than �� Then by ���	
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is of order greater than �� So f ��z� is of order greater than �� But a function and
its derivative should have the same order� This is a contradiction and the proof of
the corollary is complete�

�� Concluding Remarks�

I� If we now consider the particular sequence fpng of twin primes	 we see from
the proof of Theorem � that
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Can one use the fact that
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sharper result on the order of
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II� The sequence fqng of perfect numbers is known to satisfy
P
�

n��
�
qn

��	 a
condition similar to Brun�s� Since Theorem � and its corollary hold for any sequence
fpng of positive numbers for which
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