
International Journal of Mathematics and
Computer Science, 7(2012), no. 1, 85–92

� �

M
CS

Euler-type formulas

Badih Ghusayni

Department of Mathematics
Faculty of Science-1
Lebanese University
Hadath, Lebanon

email: badih@future-in-tech.net

(Received May 2, 2012, Accepted July 10, 2012)

Abstract
Finding the exact value that

∑∞
n=1

1
n3 converges to is one of the

most notorious problems that did not even yield to Euler. A less
difficult problem to consider is to find a representation of ζ(3) in terms
of ∞∑

n=1

1

n3

(
2n
n

)

only which would be a beautiful result similar to Euler’s

ζ(2) = 3
∞∑

n=1

1

n2

(
2n
n

)

not to mention the fact that it is faster converging.
In this paper we find a new representation of ζ(3) in terms of

∑∞
n=1

1

n3

⎛
⎝ 2n

n

⎞
⎠

and
∫ 1

2
0

sin−1 x
x dx. More precisely, we prove the following new formula:

ζ(3) = π

∫ 1
2

0

sin−1 y

y
dy − 3

4

∞∑
n=1

1

n3

(
2n
n

) .
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1 Introduction

The formula

ζ(3) =
2

7
π2 log 2 +

16

7

∫ π
2

0

x log(sin x)dx (1)

was discovered by Euler [5] who by the time he proved this in 1772 had been
blind for 6 years according to [1], p. 1084.
From ([7], formula 3):

∞∑
n=1

1

n3

(
2n
n

) = −2

∫ π
3

0

x log(2 sin(
x

2
))dx

which is equivalent to

∞∑
n=1

1

n3

(
2n
n

) = −8

∫ π
6

0

u log(2 sin u)du = −1

9
π2 log 2− 8

∫ π
6

0

u log(sin u)du

suggests a possible connection between ζ(3) and
∑∞

n=1
1

n3

⎛
⎝ 2n

n

⎞
⎠

only.

A variant of formula (1) is ([4], formula 89)

ζ(3) =
2

9
π2 log 2 +

16

3π

∫ π
2

0

x2 log(sin x)dx

Euler [6] showed that

∫ π
2

0

log(sin x)dx = −1

2
π log 2.

Using integration by parts we have

∫ t

0

x2 cot x dx = x2 log(sin x)

∣∣∣∣
t

0

− 2

∫ t

0

x log(sin x) dx

Since x2 log(sin x) = x2 log sin x
x

+ x2 log x we have lim
x→0

x2 log sin x = 0. As a

result, ∫ t

0

x2 cot x dx = t2 log(sin t) − 2

∫ t

0

x log(sin x) dx



Euler-type fomulas 87

which for t = π
2

yields

∫ π
2

0

x2 cot x dx = −2

∫ π
2

0

x log(sin x) dx

and consequently we get

ζ(3) =
2

7
π2 log 2 − 8

7

∫ π
2

0

x2 cot xdx,

a formula where the integrand is free of log .
Again, a variant of this formula ([4], formula 42) is

ζ(3) =
2

9
π2 log 2 − 16

9π

∫ π
2

0

x3 cot xdx.

It is worth mentioning here the well-known Euler integral ([4], p. 54)∫ π
2

0

x cot xdx =
1

2
π log 2 (2)

and ([9], p. 82)∫ π
2

0

log(cos x)dx =

∫ π
2

0

log(sin x)dx = −1

2
π log 2 (3)

On the other hand ([4], formula 102,)∫ t

0

x

sin x
dx = t log tan

(
t

2

)
+ 2

∞∑
n=0

sin(2n + 1)t

(2n + 1)2
(4)

Again, it is worth mentioning here that∫ π
2

0

x2

sin2 x
dx = π log 2.

However, 1
2

∫ π
2

0
x

sin x
dx = G, Catalan’s constant which is still unknown.

Together with [2], formula (35)∫ π
2

0

x2

sin x
dx = 2πG − 7

2
ζ(3)

yield the curiously looking formula

ζ(3) =
2

7

∫ π
2

0

x(π − x)

sin x
dx.
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2 The Main problem

In [7] I have obtained the following representation

ζ(3) =
∞∑

n=1

sin nπ
3

n2
− 3

4

∞∑
n=1

1

n3

(
2n
n

)

which in [2] I have improved to

ζ(3) = −
√

3

18
π3 +

3
√

3

4
π

∞∑
n=1

1

(3n − 2)2
− 3

4

∞∑
n=1

1

n3

(
2n
n

) (5)

The simply-looking series
∑∞

n=1
1

(3n−2)2
, however, is hard to evaluate as I came

to realize. Indeed, it appeared often even in Ramanujan’s writings (see, for
example, [3]) and specifically as

∫ 1√
3

0

tan−1 t

t
dt = − π

12
log 3 − 5π2

18
√

3
+

5
√

3

4

∞∑
k=0

1

(3k + 1)2
(6)

The alternative venue in lieu of the value that
∑∞

n=1
1

(3n−2)2
converges to is to

express
∑∞

n=1
1

(3n−2)2
in terms of either ζ(3) or

∑∞
n=1

1

n3

⎛
⎝ 2n

n

⎞
⎠

thus attaining

the objective of expressing ζ(3) in terms of
∑∞

n=1
1

n3

⎛
⎝ 2n

n

⎞
⎠

only. However, I

was not able to do that mathematically or even by using the Computer Al-
gebra System Maple. This gridlock motivated this paper to obtain a formula
similar to formula (5) with the term

∑∞
n=1

1
(3n−2)2

replaced with an easier one.

Looking at formula (6) the idea is to use the LLL algorithm [10] incorpo-

rated in Maple to try to find an integer relation among say ζ(3),
∫ 1√

3

0
tan−1 x

x
dx

and
∑∞

n=1
1

n3

⎛
⎝ 2n

n

⎞
⎠

which can then possibly proven mathematically.

The previous discussion suggested the following Maple worksheet:

> a := evalf((Pi*sqrt(3))*(sum(1/(3*n+1)∧2, n = 0 .. infinity)))
a := 6.103795887
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> b := evalf(Zeta(3))
b := 1.202056903
> c := evalf(sum(1/(n∧3*binomial(2*n, n)), n = 1 .. infinity))
c := 0.5229461921
f := evalf(Pi*(Int(arctan(t)/t, t = 0 .. 1/sqrt(3))))
f := 1.753538522
> A := trunc(10∧10*a)
A := 61037958870
> B := trunc(10∧10*b)
B := 12020569030
> C := trunc(10∧10*c); F := trunc(10∧10*f)
C := 5229461921
F := 17535385220
> v1 := [A, 1, 0, 0, 0]
v1 := [61037958870, 1, 0, 0, 0]
> v2 := [B, 0, 1, 0, 0]
v2 := [12020569030, 0, 1, 0, 0] > v3 := [C, 0, 0, 1, 0]; v4 := [F, 0, 0, 0, 1]
v3 := [5229461921, 0, 0, 1, 0]
v4 := [17535385220, 0, 0, 0, 1]
> with(IntegerRelations)
[LLL,LinearDependency, PSLQ]
> LLL([v1, v2, v3, v4]); [[-12, 12, 63, -362, 23], [50, 84, -453, -80, 42], [264,
-103, 30, 134, 298],

[-763, -89, -251, 137, 441]]

Unfortunately, the presence of the ”relatively large” numbers, say 12, 63,−362, 23
did not look promising.
Luckily, when I changed tan−1 x to sin−1 x with x in the right interval (0, 1

2
)

(clearly, sin−1 x = tan−1 x√
1−x2 for x2 < 1), the gloomy picture turned around

as the following worksheet shows (incidentally, I added more digits for a
change-but that is not required-and I checked the result with Maple after
small numbers came out):

> Digits := 60
Digits:=60
>a := evalf(Pi*sqrt(3)*sum(1/(3*n+1)∧2, n = 0 .. infinity)
a := 6.10379588255482017770126335812878999604878415239410822371063
> b := evalf(Zeta(3))
b := 1.20205690315959428539973816151144999076498629234049888179227
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> c := evalf(sum(1/(n∧3*binomial(2*n, n)), n = 1 ..infinity))
c := 0.522946192133335108491185183527303540163044591743977841465941
> f := evalf(Pi*(Int(arcsin(t)/t, t = 0..1/2)));
f := 1.59426654725959561676812704915692764588726973614848226289173
> A := trunc(10∧10*a)
A := 61037958825
> B := trunc(10∧10*b)
B := 12020569031
> C := trunc(10∧10*c); F := trunc(10∧10*f)
C := 5229461921
F := 15942665472
> v1 := [A, 1, 0, 0, 0]
v1 := [61037958825, 1, 0, 0, 0]
> v2 := [B, 0, 1, 0, 0]
v2 := [12020569031, 0, 1, 0, 0]
> v3 := [C, 0, 0, 1, 0]; v4 := [F, 0, 0, 0, 1]
v3 := [5229461921, 0, 0, 1, 0]
v4 := [15942665472, 0, 0, 0, 1]
> with(IntegerRelations)
[LLL, LinearDependency, PSLQ]
> LLL([v1, v2, v3, v4])
[[1, 0,−4,−3, 4], [1178, 428,−1045, 449,−998],

[753,−49, 1373,−1889,−228], [938,−480, 55, 1833, 1195]]
Thus the formula we obtained with Maple as a tool is:

−4ζ(3) − 3
∞∑

n=1

1

n3

(
2n
n

) + 4π

∫ 1
2

0

sin−1 t

t
dt = 0.

To test the result obtained using Maple we have:
> evalf(-4*Zeta(3)-3*(sum(1/(n∧3binomial(2*n,n)),n=1..infinity))+
4*Pi*(Int(arcsin(t)/t, t=0..1/2)))

2.10−59

Note that the last step is reassuring.
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We now supply a mathematical proof of the discovered identity:

ζ(3) = π

∫ 1
2

0

sin−1 y

y
dy − 3

4

∞∑
n=1

1

n3

(
2n
n

)

By the main result in [7], it is enough to show that∫ 1
2

0

sin−1 y

y
dy =

1

2

∞∑
n=1

sin nπ
3

n2
.

Clearly, ∫
u cot udu

w=sin u︷︸︸︷
=

∫
sin−1 w

w
dw.

In particular, ∫ sin t

0

sin−1 y

y
dy =

∫ t

0

x cot xdx

(Using formula (2) we get the curious special case
∫ 1

0
sin−1 y

y
dy = 1

2
π log 2.)

Therefore, using a formula in ([4], p. 53)∫ 1
2

0

sin−1 y

y
dy =

∫ π
6

0

x cot xdx = 2
∞∑

n=0

∫ π
6

0

x cos x sin(2n + 1)xdx

=

∫ π
6

0

x sin(2x)dx + 2
∞∑

n=1

∫ π
6

0

x cos x sin(2n + 1)xdx

where the first term evaluates to − π
24

+
√

3
8

and the second term yields, upon
integration by parts,

∞∑
n=1

(
sin nπ

3

4n2
− π

12

cos nπ
3

n
+

sin (n+1)π
3

4(n + 1)2
− π

12

cos (n+1)π
3

n + 1
)

Now by ([7], p. 174) for x ∈ (0, 2π),

∞∑
n=1

cos nx

n
= − log(2 sin

x

2
)

and so
∑∞

n=1

cos nπ
3

n
= 0 and

∑∞
n=1

cos
(n+1)π

3

n+1
= − cos π

3
= −1

2
. In addition,

∞∑
n=1

sin (n+1)π
3

4(n + 1)2
=

∞∑
n=2

sin nπ
3

4n2
=

∞∑
n=1

sin nπ
3

4n2
−

√
3

8
.
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Consequently, ∫ 1
2

0

sin−1 y

y
dy =

1

2

∞∑
n=1

sin nπ
3

n2
.
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