Computer Science, 7(2012), no. 1, 85-92

Euler-type formulas

Badih Ghusayni
Department of Mathematics
Faculty of Science-1
Lebanese University
Hadath, Lebanon
email: badih@future-in-tech.net

(Received May 2, 2012, Accepted July 10, 2012)

Abstract

Finding the exact value that $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges to is one of the most notorious problems that did not even yield to Euler. A less difficult problem to consider is to find a representation of $\zeta(3)$ in terms of $$
\sum_{n=1}^{\infty} \frac{1}{n^{3}\binom{2 n}{n}}
$$ only which would be a beautiful result similar to Euler's $$
\zeta(2)=3 \sum_{n=1}^{\infty} \frac{1}{n^{2}\binom{2 n}{n}}
$$ not to mention the fact that it is faster converging. In this paper we find a new representation of $\zeta(3)$ in terms of $\sum_{n=1}^{\infty} \frac{1}{{ }_{n}{ }^{3}\binom{2 n}{n}}$

and $\int_{0}^{\frac{1}{2}} \frac{\sin ^{-1} x}{x} d x$. More precisely, we prove the following new formula:

$$
\zeta(3)=\pi \int_{0}^{\frac{1}{2}} \frac{\sin ^{-1} y}{y} d y-\frac{3}{4} \sum_{n=1}^{\infty} \frac{1}{n^{3}\binom{2 n}{n}} .
$$

Key words and phrases: Euler, Euler-type, Zeta function.
AMS (MOS) Subject Classifications: 40A05, 11M32.

1 Introduction

The formula

$$
\begin{equation*}
\zeta(3)=\frac{2}{7} \pi^{2} \log 2+\frac{16}{7} \int_{0}^{\frac{\pi}{2}} x \log (\sin x) d x \tag{1}
\end{equation*}
$$

was discovered by Euler [5] who by the time he proved this in 1772 had been blind for 6 years according to [1], p. 1084.
From ([7], formula 3):

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3}\binom{2 n}{n}}=-2 \int_{0}^{\frac{\pi}{3}} x \log \left(2 \sin \left(\frac{x}{2}\right)\right) d x
$$

which is equivalent to

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3}\binom{2 n}{n}}=-8 \int_{0}^{\frac{\pi}{6}} u \log (2 \sin u) d u=-\frac{1}{9} \pi^{2} \log 2-8 \int_{0}^{\frac{\pi}{6}} u \log (\sin u) d u
$$ suggests a possible connection between $\zeta(3)$ and $\sum_{n=1}^{\infty} \frac{1}{n^{3}\binom{2 n}{n}}$ only.

A variant of formula (1) is ([4], formula 89)

$$
\zeta(3)=\frac{2}{9} \pi^{2} \log 2+\frac{16}{3 \pi} \int_{0}^{\frac{\pi}{2}} x^{2} \log (\sin x) d x
$$

Euler [6] showed that

$$
\int_{0}^{\frac{\pi}{2}} \log (\sin x) d x=-\frac{1}{2} \pi \log 2
$$

Using integration by parts we have

$$
\int_{0}^{t} x^{2} \cot x d x=\left.x^{2} \log (\sin x)\right|_{0} ^{t}-2 \int_{0}^{t} x \log (\sin x) d x
$$

Since $x^{2} \log (\sin x)=x^{2} \log \frac{\sin x}{x}+x^{2} \log x$ we have $\lim _{x \rightarrow 0} x^{2} \log \sin x=0$. As a result,

$$
\int_{0}^{t} x^{2} \cot x d x=t^{2} \log (\sin t)-2 \int_{0}^{t} x \log (\sin x) d x
$$

Euler-type fomulas
which for $t=\frac{\pi}{2}$ yields

$$
\int_{0}^{\frac{\pi}{2}} x^{2} \cot x d x=-2 \int_{0}^{\frac{\pi}{2}} x \log (\sin x) d x
$$

and consequently we get

$$
\zeta(3)=\frac{2}{7} \pi^{2} \log 2-\frac{8}{7} \int_{0}^{\frac{\pi}{2}} x^{2} \cot x d x
$$

a formula where the integrand is free of \log.
Again, a variant of this formula ([4], formula 42) is

$$
\zeta(3)=\frac{2}{9} \pi^{2} \log 2-\frac{16}{9 \pi} \int_{0}^{\frac{\pi}{2}} x^{3} \cot x d x
$$

It is worth mentioning here the well-known Euler integral ([4], p. 54)

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} x \cot x d x=\frac{1}{2} \pi \log 2 \tag{2}
\end{equation*}
$$

and ([9], p. 82)

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \log (\cos x) d x=\int_{0}^{\frac{\pi}{2}} \log (\sin x) d x=-\frac{1}{2} \pi \log 2 \tag{3}
\end{equation*}
$$

On the other hand ([4], formula 102,)

$$
\begin{equation*}
\int_{0}^{t} \frac{x}{\sin x} d x=t \log \tan \left(\frac{t}{2}\right)+2 \sum_{n=0}^{\infty} \frac{\sin (2 n+1) t}{(2 n+1)^{2}} \tag{4}
\end{equation*}
$$

Again, it is worth mentioning here that

$$
\int_{0}^{\frac{\pi}{2}} \frac{x^{2}}{\sin ^{2} x} d x=\pi \log 2 .
$$

However, $\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{x}{\sin x} d x=G$, Catalan's constant which is still unknown. Together with [2], formula (35)

$$
\int_{0}^{\frac{\pi}{2}} \frac{x^{2}}{\sin x} d x=2 \pi G-\frac{7}{2} \zeta(3)
$$

yield the curiously looking formula

$$
\zeta(3)=\frac{2}{7} \int_{0}^{\frac{\pi}{2}} \frac{x(\pi-x)}{\sin x} d x .
$$

2 The Main problem

In [7] I have obtained the following representation

$$
\zeta(3)=\sum_{n=1}^{\infty} \frac{\sin \frac{n \pi}{3}}{n^{2}}-\frac{3}{4} \sum_{n=1}^{\infty} \frac{1}{n^{3}\binom{2 n}{n}}
$$

which in [2] I have improved to

$$
\begin{equation*}
\zeta(3)=-\frac{\sqrt{3}}{18} \pi^{3}+\frac{3 \sqrt{3}}{4} \pi \sum_{n=1}^{\infty} \frac{1}{(3 n-2)^{2}}-\frac{3}{4} \sum_{n=1}^{\infty} \frac{1}{n^{3}\binom{2 n}{n}} \tag{5}
\end{equation*}
$$

The simply-looking series $\sum_{n=1}^{\infty} \frac{1}{(3 n-2)^{2}}$, however, is hard to evaluate as I came to realize. Indeed, it appeared often even in Ramanujan's writings (see, for example, [3]) and specifically as

$$
\begin{equation*}
\int_{0}^{\frac{1}{\sqrt{3}}} \frac{\tan ^{-1} t}{t} d t=-\frac{\pi}{12} \log 3-\frac{5 \pi^{2}}{18 \sqrt{3}}+\frac{5 \sqrt{3}}{4} \sum_{k=0}^{\infty} \frac{1}{(3 k+1)^{2}} \tag{6}
\end{equation*}
$$

The alternative venue in lieu of the value that $\sum_{n=1}^{\infty} \frac{1}{(3 n-2)^{2}}$ converges to is to $\operatorname{express} \sum_{n=1}^{\infty} \frac{1}{(3 n-2)^{2}}$ in terms of either $\zeta(3)$ or $\sum_{n=1}^{\infty} \frac{1}{n^{3}\binom{2 n}{n}}$ thus attaining the objective of expressing $\zeta(3)$ in terms of $\sum_{n=1}^{\infty} \frac{1}{{ }_{n^{3}}\binom{2 n}{n}}$ only. However, I was not able to do that mathematically or even by using the Computer Algebra System Maple. This gridlock motivated this paper to obtain a formula similar to formula (5) with the term $\sum_{n=1}^{\infty} \frac{1}{(3 n-2)^{2}}$ replaced with an easier one.

Looking at formula (6) the idea is to use the LLL algorithm [10] incorporated in Maple to try to find an integer relation among say $\zeta(3), \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\tan ^{-1} x}{x} d x$ and $\sum_{n=1}^{\infty} \frac{1}{{ }_{n} 3}\binom{2 n}{n}$ which can then possibly proven mathematically.
The previous discussion suggested the following Maple worksheet:

$$
\begin{aligned}
& \quad>\mathrm{a}:=\operatorname{evalf}\left(\left(\operatorname{Pi}^{*} \operatorname{sqrt}(3)\right)^{*}\left(\operatorname{sum}\left(1 /\left(3^{*} \mathrm{n}+1\right) \wedge 2, \mathrm{n}=0 . . \text { infinity }\right)\right)\right) \\
& a:=6.103795887
\end{aligned}
$$

```
\(>\mathrm{b}:=\operatorname{evalf}(\) Zeta(3) \()\)
\(b:=1.202056903\)
\(>\mathrm{c}:=\operatorname{evalf}\left(\operatorname{sum}\left(1 /\left(\mathrm{n} \wedge 3^{*} \operatorname{binomial}\left(2^{*} \mathrm{n}, \mathrm{n}\right)\right), \mathrm{n}=1 .\right.\right.\). infinity \(\left.)\right)\)
\(c:=0.5229461921\)
\(f:=\operatorname{evalf}\left(\operatorname{Pi}^{*}(\operatorname{Int}(\arctan (\mathrm{t}) / \mathrm{t}, \mathrm{t}=0 . .1 / \operatorname{sqrt}(3)))\right)\)
\(f:=1.753538522\)
\(>\mathrm{A}:=\operatorname{trunc}\left(10 \wedge 10^{*} \mathrm{a}\right)\)
\(A:=61037958870\)
\(>\mathrm{B}:=\operatorname{trunc}\left(10 \wedge 10^{*} \mathrm{~b}\right)\)
\(B:=12020569030\)
\(>\mathrm{C}:=\operatorname{trunc}\left(10 \wedge 10^{*} \mathrm{c}\right) ; \mathrm{F}:=\operatorname{trunc}\left(10 \wedge 10^{*} \mathrm{f}\right)\)
\(C:=5229461921\)
\(F:=17535385220\)
\(>\mathrm{v} 1:=[\mathrm{A}, 1,0,0,0]\)
\(v 1:=[61037958870,1,0,0,0]\)
\(>\mathrm{v} 2:=[\mathrm{B}, 0,1,0,0]\)
\(v 2:=[12020569030,0,1,0,0]>\mathrm{v} 3:=[\mathrm{C}, 0,0,1,0] ; \mathrm{v} 4:=[\mathrm{F}, 0,0,0,1]\)
\(v 3:=[5229461921,0,0,1,0]\)
\(v 4:=[17535385220,0,0,0,1]\)
\(>\) with(IntegerRelations)
[LLL, LinearDependency, PSLQ]
\(>\operatorname{LLL}([\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4]) ;[[-12,12,63,-362,23],[50,84,-453,-80,42],[264\),
-103, 30, 134, 298],
[-763, -89, -251, 137, 441]]
```

Unfortunately, the presence of the "relatively large" numbers, say $12,63,-362,23$ did not look promising.
Luckily, when I changed $\tan ^{-1} x$ to $\sin ^{-1} x$ with x in the right interval $\left(0, \frac{1}{2}\right)$ (clearly, $\sin ^{-1} x=\tan ^{-1} \frac{x}{\sqrt{1-x^{2}}}$ for $x^{2}<1$), the gloomy picture turned around as the following worksheet shows (incidentally, I added more digits for a change-but that is not required-and I checked the result with Maple after small numbers came out):

$$
>\text { Digits }:=60
$$

Digits: $=60$
$>\mathrm{a}:=\operatorname{evalf}\left(\mathrm{Pi}^{*} \operatorname{sqrt}(3)^{*} \operatorname{sum}\left(1 /\left(3^{*} \mathrm{n}+1\right) \wedge 2, \mathrm{n}=0\right.\right.$.. infinity $)$
$a:=6.10379588255482017770126335812878999604878415239410822371063$
$>b:=\operatorname{evalf}(\operatorname{Zeta}(3))$
$b:=1.20205690315959428539973816151144999076498629234049888179227$

```
\(>c:=\operatorname{evalf}\left(\operatorname{sum}\left(1 /\left(\mathrm{n} \wedge 3^{*} \operatorname{binomial}\left(2^{*} \mathrm{n}, \mathrm{n}\right)\right), \mathrm{n}=1\right.\right.\)..infinity \(\left.)\right)\)
\(c:=0.522946192133335108491185183527303540163044591743977841465941\)
\(>\mathrm{f}:=\operatorname{evalf}\left(\mathrm{Pi}^{*}(\operatorname{Int}(\arcsin (\mathrm{t}) / \mathrm{t}, \mathrm{t}=0 . .1 / 2))\right.\);
\(f:=1.59426654725959561676812704915692764588726973614848226289173\)
\(>A:=\operatorname{trunc}\left(10 \wedge 10^{*} \mathrm{a}\right)\)
\(A:=61037958825\)
\(>B:=\operatorname{trunc}\left(10 \wedge 10^{*} \mathrm{~b}\right)\)
\(B:=12020569031\)
\(>\mathrm{C}:=\operatorname{trunc}\left(10 \wedge 10^{*} \mathrm{c}\right) ; \mathrm{F}:=\operatorname{trunc}\left(10 \wedge 10^{*} \mathrm{f}\right)\)
\(C:=5229461921\)
\(F:=15942665472\)
\(>\mathrm{v} 1:=[\mathrm{A}, 1,0,0,0]\)
\(v 1:=[61037958825,1,0,0,0]\)
\(>\mathrm{v} 2:=[\mathrm{B}, 0,1,0,0]\)
\(v 2:=[12020569031,0,1,0,0]\)
\(>\mathrm{v} 3:=[\mathrm{C}, 0,0,1,0] ; \mathrm{v} 4:=[\mathrm{F}, 0,0,0,1]\)
\(v 3:=[5229461921,0,0,1,0]\)
\(v 4:=[15942665472,0,0,0,1]\)
> with(IntegerRelations)
[LLL, LinearDependency, PSLQ]
\(>\operatorname{LLL}([\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4])\)
[ [1, 0, -4, -3, 4], [1178, 428, -1045, 449, -998],
```

[753, - 49, 1373, -1889, - 228], [938, -480, 55, 1833, 1195]]
Thus the formula we obtained with Maple as a tool is:

$$
-4 \zeta(3)-3 \sum_{n=1}^{\infty} \frac{1}{n^{3}\binom{2 n}{n}}+4 \pi \int_{0}^{\frac{1}{2}} \frac{\sin ^{-1} t}{t} d t=0
$$

To test the result obtained using Maple we have:
$>\operatorname{evalf}\left(-4^{*} \operatorname{Zeta}(3)-3^{*}\left(\operatorname{sum}\left(1 /\left(\mathrm{n} \wedge 3\right.\right.\right.\right.$ binomial $\left.\left(2^{*} \mathrm{n}, \mathrm{n}\right)\right), \mathrm{n}=1$..infinity $\left.)\right)+$ $\left.4^{*} \mathrm{Pi}^{*}(\operatorname{Int}(\arcsin (\mathrm{t}) / \mathrm{t}, \mathrm{t}=0 . .1 / 2))\right)$
2.10^{-59}
Note that the last step is reassuring.

We now supply a mathematical proof of the discovered identity:

$$
\zeta(3)=\pi \int_{0}^{\frac{1}{2}} \frac{\sin ^{-1} y}{y} d y-\frac{3}{4} \sum_{n=1}^{\infty} \frac{1}{n^{3}\binom{2 n}{n}}
$$

By the main result in [7], it is enough to show that

$$
\int_{0}^{\frac{1}{2}} \frac{\sin ^{-1} y}{y} d y=\frac{1}{2} \sum_{n=1}^{\infty} \frac{\sin \frac{n \pi}{3}}{n^{2}}
$$

Clearly,

$$
\int u \cot u d u \overbrace{=}^{w=\sin u} \int \frac{\sin ^{-1} w}{w} d w
$$

In particular,

$$
\int_{0}^{\sin t} \frac{\sin ^{-1} y}{y} d y=\int_{0}^{t} x \cot x d x
$$

(Using formula (2) we get the curious special case $\int_{0}^{1} \frac{\sin ^{-1} y}{y} d y=\frac{1}{2} \pi \log 2$.) Therefore, using a formula in ([4], p. 53)

$$
\begin{gathered}
\int_{0}^{\frac{1}{2}} \frac{\sin ^{-1} y}{y} d y=\int_{0}^{\frac{\pi}{6}} x \cot x d x=2 \sum_{n=0}^{\infty} \int_{0}^{\frac{\pi}{6}} x \cos x \sin (2 n+1) x d x \\
=\int_{0}^{\frac{\pi}{6}} x \sin (2 x) d x+2 \sum_{n=1}^{\infty} \int_{0}^{\frac{\pi}{6}} x \cos x \sin (2 n+1) x d x
\end{gathered}
$$

where the first term evaluates to $-\frac{\pi}{24}+\frac{\sqrt{3}}{8}$ and the second term yields, upon integration by parts,

$$
\sum_{n=1}^{\infty}\left(\frac{\sin \frac{n \pi}{3}}{4 n^{2}}-\frac{\pi}{12} \frac{\cos \frac{n \pi}{3}}{n}+\frac{\sin \frac{(n+1) \pi}{3}}{4(n+1)^{2}}-\frac{\pi}{12} \frac{\cos \frac{(n+1) \pi}{3}}{n+1}\right)
$$

Now by ([7], p. 174) for $x \in(0,2 \pi)$,

$$
\sum_{n=1}^{\infty} \frac{\cos n x}{n}=-\log \left(2 \sin \frac{x}{2}\right)
$$

and so $\sum_{n=1}^{\infty} \frac{\cos \frac{n \pi}{3}}{n}=0$ and $\sum_{n=1}^{\infty} \frac{\cos \frac{(n+1) \pi}{3}}{n+1}=-\cos \frac{\pi}{3}=-\frac{1}{2}$. In addition,

$$
\sum_{n=1}^{\infty} \frac{\sin \frac{(n+1) \pi}{3}}{4(n+1)^{2}}=\sum_{n=2}^{\infty} \frac{\sin \frac{n \pi}{3}}{4 n^{2}}=\sum_{n=1}^{\infty} \frac{\sin \frac{n \pi}{3}}{4 n^{2}}-\frac{\sqrt{3}}{8}
$$

Consequently,

$$
\int_{0}^{\frac{1}{2}} \frac{\sin ^{-1} y}{y} d y=\frac{1}{2} \sum_{n=1}^{\infty} \frac{\sin \frac{n \pi}{3}}{n^{2}}
$$

References

[1] R. Ayoub, Euler and the zeta function, Amer. Math. Monthly, 81, (1974), 1067-1086.
[2] D. M. Bradley, Representations of Catalan's constant, (an unpublished catalogue of formulae for the alternating sum of the reciprocals of the odd positive squares), 1998.
http://germain.umemat.maine.edu/faculty/bradley/papers/pub.html
[3] B. C. Brendt, P. T. Joshi, Chapter 9 of Ramanujan's Second Notebook, AMS, Providence, RI, USA, 1983.
[4] D. F. Connon, Some infinite series involving the Riemann zeta function, Int. J. Math. Comput. Sci., 7, no. 1, (2012), 11-83.
[5] L. Euler, Exercitationes Analyticae, 1772.
[6] L. Euler, De summis serierum numeros Bernoullianos involventium, Novi commentarii acadamiae scientiarum Petropolitanae, 14,(1769), 129-167.
[7] B. Ghusayni, Some representations of $\zeta(3)$, Missouri Journal of Mathematical Sciences, 10, no. 3, Fall 1998, 169-175. Math Review: 2000b:11103.
http://www.math-cs.ucmo.edu/~mjms/1998-3p.html
[8] B. Ghusayni, Exploring new identities with Maple as a tool, WSEAS Transactions on Information Science and Applications, 1, no. 5, (2004), 1151-1157.
[9] B. Ghusayni, Number Theory from an analytic point of view, 2003.
[10] A. K. Lenstra, H. W. Lenstra, L. Lovasz, Factoring Polynomials with Rational Coefficients, Math. Ann., 261, (1982), 515-534.

