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Abstract

Finding the exact value that » > | % converges to is one of the

most notorious problems that did not even yield to Euler. A less
difficult problem to consider is to find a representation of {(3) in terms

of
S
1 3 ( 2n >
n
only which would be a beautiful result similar to Euler’s
= 1
(2)=3> —
n
n=1p2 ( )
n

not to mention the fact that it is faster converging.
In this paper we find a new representation of ¢(3) in terms of y > | +
n

n

Lo
and [? %dw. More precisely, we prove the following new formula:
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1 Introduction

The formula

7

was discovered by Euler [5] who by the time he proved this in 1772 had been
blind for 6 years according to [1], p. 1084.
From ([7], formula 3):

2 16 (>
¢(3) = =m*log 2 + 76 /2 x log(sin x)dx (1)
0

™

00 1 3

P Fa _2/ rlog(2sin(5))dz

= o3 ( 2n ) 0 2
n

which is equivalent to

o0

1 1
5 — = —8/6 ulog(2sinu)du = —=7*log2 — 8/6 ulog(sinu)du
3 ( 2n ) 0 9 0

us s

n=1 n
n

suggests a possible connection between ¢(3) and >~ | ﬁ only.
n3 " )

A variant of formula (1) is ([4], formula 89)

2 16 (2
C(3) = =r?log2 + —/ 2% log(sin x)dx
9 3 Jo

Euler [6] showed that

2 1
/ log(sinz)dx = —§7T10g 2.
0

Using integration by parts we have

t

t t
/ v? cot x dr = 2* log(sinz)| — 2 / xlog(sinz) dx
0 0

0

S0t 4 22logx we have lim 2?logsinz = 0. As a

z—0

Since x?log(sinz) = x?log

result,

t t
/ 2* cot x dr = t*log(sint) — 2/ xlog(sinz) dx
0 0
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which for ¢ = 7 yields

3 >
/ v* cotx dr = —2/ xlog(sinz) dx
0 0

and consequently we get

9 s
¢(3) = ?w2 log2 — g/Q 2% cot xvd,
0

a formula where the integrand is free of log .
Again, a variant of this formula ([4], formula 42) is

2 16 [*
C(3) = =m?log?2 — —/ 2% cot zdz.
9 97 Jo
It is worth mentioning here the well-known Euler integral ([4], p. 54)
2 1
/ xcotxdr = —mlog2 (2)
0 2
and ([9], p. 82)
: LI 1
/ log(cosz)dxr = / log(sin x)dx = —§7Tlog2 (3)
0 0

On the other hand ([4], formula 102,)

by sin(2n + 1)t
dx =tlogt 2 4
/Osinx ’ o8 an( >+ Z (2n +1)2 )

Again, it is worth mentioning here that

T2
2
/ 'xz dxr = mlog 2.
0 sin“z

However, % 0 szda: G, Catalan’s constant which is still unknown.

Together with [2], formula (35)

/5 v dx—QWG——C()
0

sin x
yield the curiously looking formula

¢(3) = g/og de.

7 sin x
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2 The Main problem

In [7] I have obtained the following representation

(@) = Zst ——Z—
n=1 n n=1 n3 ( )
n
which in [2] T have improved to
V3 3 - 3¢ 1
C(3)——— Z 3n_ ;n?)(%) (5)
n

The simply-looking series Y >~ however, is hard to evaluate as I came

Sn 2)2
to realize. Indeed, it appeared often even in Ramanujan’s writings (see, for

example, [3]) and specifically as

75 tan~ 't T 52 5\/_ 1

dt = - log3 —
2% T 55 £ 3k + 1)?

(6)

The alternative venue in lieu of the value that Y >° | == converges to is to

3n 2)

express » -, m in terms of either ((3) or Zn 1 12 thus attaining
n3
n
the objective of expressing ((3) in terms of Y~ +2 only. However, I
n
n3
n

was not able to do that mathematically or even by using the Computer Al-
gebra System Maple. This gridlock motivated this paper to obtain a formula
similar to formula (5) with the term >~ o 2)2 replaced with an easier one.

Looking at formula (6) the idea is to use the LLL algorithm [10] incorpo-

rated in Maple to try to find an integer relation among say ((3 fof ta“m BTy

and >, #) which can then possibly proven mathematlcally

n
The previous discussion suggested the following Maple worksheet:

n3

> a = evalf((Pi*sqrt(3))*(sum(1/(3*n+1)A2, n = 0 .. infinity)))
a = 6.103795887
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> b := evalf(Zeta(3))
b := 1.202056903
> ¢ := evalf(sum(1/(nA3*binomial(2*n, n)), n = 1 .. infinity))
¢ = 0.5229461921
f = evalf(Pi*(Int(arctan(t) /t, t = 0 .. 1/sqrt(3))))
f:=1.753538522
> A := trunc(10A10*a)
A = 61037958870
> B := trunc(10A10*b)
B = 12020569030
> C := trunc(10A10*c); F := trunc(10A10*f)
C := 5229461921
F := 17535385220
>vl:=[A1,0,0,0]
vl := [61037958870, 1,0, 0, 0]
>v2:=[B,0, 1,0, 0]
v2 = [12020569030,0,1,0,0] > v3 := [C, 0, 0, 1, 0]; v4 := [F, 0, 0, 0, 1]
v3 = [5229461921,0,0, 1, 0]
v4 = [17535385220, 0, 0, 0, 1]
> with(IntegerRelations)
[LLL, Linear Dependency, PSLQ)]
> LLL([v1, v2, v3, vd]); [F12, 12, 63, -362, 23], [50, 84, -453, -0, 42], [264,
-103, 30, 134, 298],
763, -89, -251, 137, 441]]

Unfortunately, the presence of the "relatively large” numbers, say 12, 63, —362, 23
did not look promising.
Luckily, when I changed tan™' z to sin~" « with 2 in the right interval (0, 1)
(clearly, sin™' z = tan™! \/1i7 for 22 < 1), the gloomy picture turned around
as the following worksheet shows (incidentally, I added more digits for a
change-but that is not required-and I checked the result with Maple after

small numbers came out):

> Digits := 60
Digits:=60
>a = evalf(Pi*sqrt(3)*sum(1/(3*n+1)A2, n = 0 .. infinity)
a = 6.10379588255482017770126335812878999604878415239410822371063
> b = evalf(Zeta(3))
b := 1.20205690315959428539973816151144999076498629234049888179227
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> ¢ := evalf(sum(1/(nA3*binomial(2*n, n)), n = 1 ..infinity))
c = 0.522946192133335108491185183527303540163044591743977841465941
> f:= evalf(Pi*(Int(arcsin(t)/t, t = 0..1/2)));

[ = 1.59426654725959561676812704915692764588726973614848226289173
> A = trunc(10A10%*a)

A = 61037958825

> B := trunc(10A10*b)

B := 12020569031

> C := trunc(10A10%*c); F := trunc(10A10*f)

C := 5229461921

F:= 15942665472

>vl:=1[A1,0,0,0]

vl = 61037958825, 1,0,0, 0]

>v2:=[B, 0, 1,0, 0]

v2 := [12020569031, 0, 1, 0, 0]

>v3:=1[C,0,0,1,0]; v4 :=[F, 0,0, 0, 1]

v3 = [5229461921,0,0, 1, 0]

vd = [15942665472, 0,0, 0, 1]

> with(IntegerRelations)

[LLL, LinearDependency, PSLQ)]

> LLL([v1, v2, v3, v4])

1,0, 4, —3, 4], [1178, 428, —1045, 449, —998],

(753, —49, 1373, —1889, —228], [938, —480, 55, 1833, 1195]]
Thus the formula we obtained with Maple as a tool is:

> 1 %sinflt
—4C(3) — 3 —— t+4 ——dt = 0.
Q() Z 3(2n> 7T/O t

n=1 n
n

To test the result obtained using Maple we have:
> evalf(-4*Zeta(3)-3*(sum(1/(nA3binomial(2*n,n)),n=1..infinity))+
4*Pi*(Int(arcsin(t) /t, t=0..1/2)))

2.107°Y
Note that the last step is reassuring.
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We now supply a mathematical proof of the discovered identity:

2 sin~! Y 3 — 1
@)= [T - Ly )
n
By the main result in [7], it is enough to show that
2 gin ! 1 = sin *F
/0 Y ydy T2 ; n23 ’
Clearly, .
/ucot uduw;s:iu/smwlwdw.

In particular,

sint ;. —1 t
S
/ n ydy = / x cot xdx
0 Y 0

(Using formula (2) we get the curious special case fol

Therefore, using a formula in ([4], p. 53)

.1 z 00 s
/ o ydy = / xcotxdr = 2 Z/ xcosxsin(2n + 1)zdz
0 Y 0 00

& > [%
= / xsin(2z)dx + 2 Z / xcosxsin(2n + 1)zdx
0 = Jo

where the first term evaluates to —g; + % and the second term yields, upon

in—! 1
%dy = 5mlog2.)

D=

integration by parts,
. : 1 1
sin gt 7 ocos’  sin (ntDm o cos ("J; . )

P S <
4n? 12 n 4n+1)2 12 n+1

n=1

Now by ([7], p. 174) for x € (0, 27),

Z CSRE log(2 sin %)

n=1 n
d 0o cos%_0 d 00 cos%_ T 1 I dditi
and so 7 —2 =0and > 7, ——F— = —cos § = —35. In addition,
o . (n+)w o0 .o X iy nw
Zsm 3 2281n72281n?_\/§
4 1)2 4n? 4n? '
(n+1) — 4n “— dn 8

n=1
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Consequently, 1
1.y % i nr
/02 smy ydy _ %; 8117123 .
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