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Abstract

In this article we decided to begin with the 12th Century because
this century witnessed huge mathematical interest in Western Europe
stimulated by Arabic original books as well as translated ones be-
ing translated into Latin (which became the venue of intellectual and
scientific domains in Western Europe and remained in this academic
function until the 18th century) at Spain translation centers.
Despite the long war between the kingdoms of England and France
from 1337 to 1453 resulting in famine and plague in the 14th and the
first half of the 15th century, the year 1450 witnessed the advent of
the printing press which had an enormous impact on printing arith-
metic books for the purpose of teaching business people computational
methods for their commercial needs.
A more detailed treatment is done on later centuries.

1 12th Century

This century witnessed a breakthrough in Western Europe stimulated by
Arabic original mathematics books as well as translated ones being translated
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into Latin at Spain translation centers mainly by three pioneers Gerard of
Cremona, Robert of Chester, and Adelard of Bath (who all learned Arabic in
Toledo, Spain). One of the translated works was forMuhammad IbnMusa
Al-Khawrizmi who lived in the 9th century. From his family name, rendered
in Latin, as ”Algoritmi” the term ”Algorithm” originated. From the title of
his Arabic book on ”al-jabr” the term ”algebra” originated. In this book, Al-
Khawrizmi gave a complete solution to the Quadratic Equation (Quadratic
Formula). The problems which he included illustrate the application of the
Quadratic Equation to numerous situations including inheritance questions
which at times could be complicated under Muslim Law.
Another translated work in this epoch was Euclid’s ”Elements” in Arabic
translated into Latin in 1142.

2 13th Century

Italian merchants trading with Arabs in this century put Leonard of Pisa
(Fibonacci) (1175 - 1250) in a unique position to disseminate the ideas of
Arab Mathematicians in Western Europe. He was brought up in the region
of North Africa known today as Algeria. His father was a Customs Officer
at Bougie, the most important port on the North African Coast. Fibonacci
traveled a lot to Egypt, Syria, and Greece. His best known work ”Liber
Abaci” (published in 1202 and then in a revised edition in 1228) showed
the first use of ”Abaci” (abacus) in a wider sense to refer to mathematics
computation rather that the later meaning as a counting board.
However, despite Fibonacci push to adopt the Arabic numerals, there was
a huge resistance to safeguard against possible forged alterations to 6 or 9
of a numeral like 0 (something not easy to do with Roman numerals, for
example X = 10). Consequently, a money order was recorded also in words,
a practice we see even nowadays in writing checks, say.
Despite Fibonacci wide contributions, he is most famous [3] for his sequence:

u0 = 0, u1 = 1, un+2 = un + un+1.

Here we give the explicit formula for a Fibonacci sequence, proved after
Fibonacci’s death, by Binet:
Let xn = un+1/un for n ∈ N. First we prove x1 < x3 < x5 < ... < x6 < x4 <
x2: Notice that x2 = 2, x3 = 3

2
, x4 = 5

3
. We have x1 < x3 < x4 < x2. More

generally, by induction

x2n−1 < x2n+1 < x2n+2 < x2n. (∗)n
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Indeed, assume (∗)k−1 holds; that is, x2k−3 < x2k−1 < x2k < x2k−2. Now
xn = un−1+un

un
= 1

xn−1
+ 1. Therefore, x2k−1 < x2k+1 < x2k < x2k−2. By the

same process x2k−1 < x2k+1 < x2k+2 < x2k, which is (∗)k.
Next we prove that: limn→∞(x2n − x2n−1) = 0..

x2n+2 − x2n+1 =
1

x2n+1

− 1

x2n

=
1

1
x2n

+ 1
− 1

1
x2n−1

+ 1

=
x2n

x2n + 1
− x2n−1

x2n−1 + 1
<

x2n − x2n−1

x2n + 1
<

1

2
(x2n − x2n−1)

(since x2n−1 < x2n ⇒ − 1
x2n−1+1

< − 1
x2n+1

and x2n = 1
x2n−1

+ 1 > 1).

Hence 0 < x2n − x2n−1 <
(
1
2

)n−1 → 0 as n → ∞.
Now applying the Nested Sequence Principle which states: Let {In : n ∈ N

be a collection of closed intervals of R such that:
(i) In+1 ⊆ In for each n ∈ N, and
(ii) For ǫ > 0, the length of In < ǫ for some n.
Then ∩∞

1 In = {x} for some x ∈ R.
We take In = [x2n−1, x2n]. Then using (∗)n we see that x exists. Next we
claim that limn→∞ xn = x. To see this, let ǫ > 0 be given. Choose n0 ∈ N

such that x2n0 − x2n0−1 < ǫ. Then

n ≥ n0 ⇒ 0 ≤ x2n − x ≤ x2n − x2n−1 ≤ x2n0 − x2n0−1 < ǫ.

Similarly,

n ≥ n0 ⇒ 0 ≤ x− x2n−1 < ǫ.

Thus k ≥ 2n0 ⇒ |xk − x| < ǫ (Consider k = 2n and k = 2n− 1).
Next since x1 = 1 < x < x2 = 2, x satisfies the quadratic equation x2−x−1 =
0 and so x = 1

2
+

√
5
2

:= α is accepted (Notice that the other root is β := 1
2
−

√
5
2

is rejected).
Let α and β be the roots of x2 = x + 1. If wn = aαn + bβn, then we prove
that the sequence (wn)

∞
n=0 satisfies wn+2 = wn+1 + wn for all n ≥ 0.

If x2 − x − 1 = (x − α)(x − β) and for n ∈ N ∪ {0}, wn = aαn + bβn, then
wn+2 = wn+1 + wn:
Indeed,

wn+2 = aα2αn+bβ2βn = a(α+1)αn+b(β+1)βn = aαn+1+bβn+1+aαn+bβn = wn+1+wn.

Using the theory of double recurrence sequences, we can set a + b = u0 = 0
and aα + bβ = u1 = 1. It follows that un = wn and the system in matrix
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form is (
α β
1 1

)(
a
b

)

=

(
1
0

)

so (
a
b

)

=
1

α− β

(
1 −β
−1 α

)(
1
0

)

⇒
a =

1

α− β
=

1√
5
= −b, un =

1√
5
(αn − βn).

Now

xn =
un+1

un

=
αn+1 − βn+1

αn − βn
=

αn+1 − (− 1
α
)n+1

αn − (− 1
α
)n

=
α
(
1− (−1)n+1 1

α2n+2

)

1− (−1)n 1
α2n

→ α.

Thus we obtain Binet’s formula:

un =
(1+

√
5

2
)n − (1−

√
5

2
)n√

5

3 14th Century

Nicole Oresme (1320-1382) was a French who wrote five mathematics
books on graphing functions and investigating infinite series (he had more
interests besides mathematics–like philosophy and theology, when in 1369 he
translated Aristotle works from Latin to French and added commentaries).
Most of his mathematics work centered around infinite series. He gave the
following proof that

∑∞
1

1
n
diverges (which was remarkable especially because

several mathematicians in the 14th Century thought that this series was
convergent):

∞∑

1

1

n
= 1+

1

2
+
1

3
+
1

4
+
1

5
+
1

6
+
1

7
+
1

8
+
1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16
+...

= 1+
1

2
+{1

3
+
1

4
}+{1

5
+
1

6
+
1

7
+
1

8
}+{1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16
}+...

≥ 1+{1
2
}+{1

4
+
1

4
}+{1

8
+
1

8
+
1

8
+
1

8
}+{ 1

16
+

1

16
+

1

16
+

1

16
+

1

16
+

1

16
+

1

16
+

1

16
}+...

= 1 +
1

2
+

1

2
+

1

2
+

1

2
+ ...
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which diverges.
He discussed convergence and divergence conditions of geometric series and,
whenever possible, evaluated sums of several geometric series.
In addition, he used a geometric argument to see that

∑∞
1

n
2n

= 2.
Towards the end of this century algebraic symbolism was developed in Italy
in which letters, like x, were used for an unknown. Other letters started
appearing for constants.

4 15th Century

Nicolas Chuquet (1445-1488) was a French who has a Bachelor Degree
in Medicine (which suggests that he didn’t obtain the complete requirements
to practice as a doctor) but was more interested in Mathematics. He used
zero and negative numbers as exponents. His 1484 Algebra text ”Triparty
en la science des nombres” (Three parts in the science of numbers) contained
not only algebra but also arithmetic including the words and phrases: mil-
lion, billion, trillion, fourth quadrillion, fifth quyillion, sixth sixlion, seventh
septyillion, eight ottyllion, ninth nonyllion and so on.
Chuquet was described as advanced for his time [15] that his contemporaries
were unable to understand him and thus neglected him.
Chuquet is believed to be one of the inventors of logarithms and treated
irrational numbers.

5 16th Century

The Italian mathematician Niccolo Fontana (1499–1557) discovered a
general algebraic formula for solving cubic equations. The idea is to first use
the substitution t = x+ a

3
to reduce x3 + ax2 + bx+ c = 0 to t3 + pt+ q = 0

(with p = b− a2

3
, q = 2a3

27
− ab

3
+ c) whose solutions are:

t1, t2, t3 =
3

√

−q

2
+

√
(p

3

)3

+
(q

2

)2

+
3

√

−q

2
−

√
(p

3

)3

+
(q

2

)2

from which x1, x2, and x3 are obtained easily.
The General Quartic formula, due to Lodovico Ferrari (1522-1565), (pub-
lished in 1545), can be written out in full using the solution of one cubic
equation and two quadratic ones:
Thus consider

x4 + ax3 + bx2 + cx+ d = 0.
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As was done in the case of the general Cubic Equation, we similarly use the
substitution t = x+ a

4
to reduce the given equation to

t4 + pt2 + qt+ r = 0.

Rewrite as
(

t2 +
p

2

)2

= −qt− r +
p2

4
.

Introduce a parameter m and expand to get

(t2 +
p

2
+m)2 = (t2 +

p

2
)2 + 2m(t2 +

p

2
) +m2.

Thus
(

t2 +
p

2
+m

)2

= 2mt2 − qt +m2 +mp +
p2

4
− r.

Choose m so that a perfect square results on the right-hand side. To do that
the discriminant in t of this quadratic equation must be zero; that is, m is a
solution of the equation

(−q)2 − 4(2m)

(

m2 + pm+
p2

4
− r

)

= 0,

which may be rewritten as

8m3 + 8pm2 + (2p2 − 8r)m− q2 = 0.

The value of m may thus be obtained from Fontana’s Method for the Cubic
Equation. We consider two cases:
Case 1. m = 0 : Here q = 0 which leads to an easy solution.
Case 2. m 6= 0 : Here we can write

q2

8m
= m2 + pm+

p2

4
− r

and so
(√

2mt− q

2
√
2m

)2

= 2mt2 − tq +
q2

8m
= (t2 +

p

2
+m)2

from which
(

t2 +
p

2
+m+

√
2mt− q

2
√
2m

)(

t2 +
p

2
+m−

√
2mt+

q

2
√
2m

)

= 0.
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Consequently, we get the four solutions using the obvious quadratic formulas.
In the context of what is discussed here it is important to mention that at
age 19, Abel (1802–1829) was able to prove a 300-year old unsolved problem
by proving that the fifth-degree equation

ax5 + bx4 + cx3 + dx2 + fx+ t = 0,

has no solutions in terms of radicals (this was later generalized by his con-
temporary Galois for all n > 4, for a proof see [8], pp. 499–503), as it is the
case for, say, quadratic equations.

6 17th Century

John Wallis (1616-1703) was an English mathematician who is given par-
tial credit for the development of infinitesimal calculus. Between 1643 and
1689 he served as chief cryptographer for Parliament and, later, the royal
court. He is credited with introducing the symbol for infinity.
However, Wallis most important result is the following formula carrying his
name

π

2
=

2

1

2

3

4

3

4

5

6

5
...

I am going to obtain this formula as a pleasant application of a function due
to Bernhard Riemann who lived in the 19th Century and whose most impor-
tant additional results we will discuss in a later section. For now let z = σ+it.

For σ > 1, the Riemann zeta function ζ is defined by ζ(z) =
∞∑

n=1

1
nz .

We have | 1
nz | = 1

|ez logn| =
1

|eσ log n| =
1
nσ . By Weierstrass test, the series

∞∑

n=1

1
nz

converges uniformly in the half-plane σ > 1 and hence on every compact
subset of this half-plane. Thus ζ is analytic in the half-plane σ > 1 being the
sum function of a uniformly convergent series of analytic functions. With
some work, this function can be continued analytically to all complex z 6= 1.
As a result, the zeta function is analytic everywhere except for a simple pole
at z = 1 with residue 1. It is well-known that the only real zeros of the zeta
function are on the negative even integers and are called the trivial zeros.
When talking about the zeta function, it would be a miss not to mention the
following famous conjecture:
The Riemann Hypothesis [16]. ALL NON-TRIVIAL ZEROS of the zeta
function have real part equal to 1

2
.
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The completed zeta function (or generically the xi-function), originally
defined by Riemann [16], is

ξ(z) =
1

2
z(z − 1)π− z

2Γ(
z

2
)ζ(z)

The success of our proof (generalization) hinges on first finding a product
representation of the completed zeta function which then is used in finding
a product representation of the zeta function. To have a relatively self-
contained paper we mention a few definitions:

Let f(z) be an entire function. The maximum modulus function, de-
noted by M(r), is defined by M(r) =max{|f(z)| : |z| = r}.

Let f(z) be a non-constant entire function. The order ρ of f(z) is defined
by

ρ = lim sup
r→∞

log logM(r)

log r
.

The order of any constant function is 0, by convention.

An entire function f(z) of positive order ρ is said to be of type τ if

τ = lim sup
r→∞

logM(r)

rρ
.

The following [10] are some important properties of the completed zeta func-
tion:

1. ξ(z) = ξ(1−z). This Functional Equation shows that the function ξ(z)
is symmetric about the critical line Re(z) = 1

2
.

2. The function ξ(z) is entire.

3. The function ξ(z) is of order one and infinite type.

4. The function ξ(z) has infinitely many zeros.

It is clear now that the completed zeta function ξ is more convenient to use
instead of the zeta function ζ since using the definition of ξ removes the
simple pole of ζ at z = 1 and as a result the theory of entire functions can
be applied if needed, to ξ. In addition, since none of the factors of ξ except
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ζ has a zero in C−{0, 1}, no information is lost about the non-trivial zeros.
The Riemann Hypothesis can therefore be stated as:
The Riemann Hypothesis using the completed zeta function. ALL
ZEROS of ξ(z) are on the critical line Re(z) = 1

2
.

We begin by finding a canonical representation of ξ(z) :
ξ(z) is an entire function of order one and infinite type. Since the zeta
function ζ(z) has a simple pole with residue 1 at z = 1, ξ(1) = 1

2
. Now, using

the functional equation ξ(z) = ξ(1 − z), ξ(0) = 1
2
Then, by ([11] p. 47), we

have

ξ(z) = eAeBz

∞∏

n=1

(1− z

zn
) exp

z

zn
,

where again {zn}∞1 are the non-zero zeros of ξ(z) and hence, using the func-
tional equation and the definition of the completed zeta function, are the
non-trivial zeros of ζ(z) which are indeed in the critical strip and A and B
are complex constants.
Now ξ(0) = 1

2
implies that eA = 1

2
and so we can write

ξ(z) =
1

2
eBz

∞∏

n=1

(1− z

zn
) exp

z

zn
.

The effort to find B using ξ(1) = 1
2
leads to

1 = eb
∞∏

n=1

(1− 1

zn
)e

1
zn .

Consider the product

p =

∞∏

n=1

(1− 1

zn
)e

1
zn .

Then

pz =
∞∏

n=1

(1− 1

zn
)ze

z
zn .

Therefore,

ξ(z) =
1

2
eBzpz

∞∏

n=1

(1− z

zn
)(1− 1

zn
)−z.

Now ξ(1) = 1
2
implies that eBp = 1 and our identity reduces to the following

representation of ξ(z) :

ξ(z) =
1

2

∞∏

n=1

(1− z

zn
)(1− 1

zn
)−z.
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Using the above product representation of ξ(z) and that for the reciprocal
of the Gamma function 1

Γ(z)
= z

∏∞
n=1(1 + z

n
)(1 + 1

n
)−z ([11], p. 49) with

the definition of ξ(z) give the following explicit representation for ζ(z)({zn}
denotes the sequence of non-trivial zeros of ζ(z)) :

ζ(z) =
1

z − 1
︸ ︷︷ ︸

for singularity

π
z
2

∞∏

n=1

(1 +
z

2n
)

︸ ︷︷ ︸

for trivial zeros

(1− z

zn
)

︸ ︷︷ ︸

for non-trivial zeros

(1 +
1

n
)−

z
2 (1− 1

zn
)−z.

Our discovered explicit representation above of the zeta function serves as a
generalization of Wallis Formula,

π

2
=

2

1

2

3

4

3

4

5

6

5
...,

To see this, for z ∈ C− {0, 1}, we can rewrite the representation above as:

(z − 1)ζ(z) =
π

z
2

z
2

∞∏

n=1

(1− z

zn
)(1− 1

zn
)−z

︸ ︷︷ ︸

2ξ(z) entire hence continuous

z

2

∞∏

n=1

(1 +
z

2n
)(1 +

1

n
)−

z
2

︸ ︷︷ ︸
1

Γ( z

2
)
entire hence continuous

.

The result now follows using limz→1(z − 1)ζ(z) = 1.

7 18th Century

The Swiss mathematician Leonard Euler (1707-1783) was one of the most
famous mathematicians of all times who had major contributions to Number
Theory, Algebra, Combinatorics, among others. He read mathematics text-
books on his own and entered the university at age 14 and got his master’s
degree at age 17. The mathematician Johann Bernoulli (his father Nicholas
and his brother Jacob were also mathematicians), discovered Euler’s great
potential for mathematics. The French physicist Arago stated that

”Euler calculated without apparent effort, as men breathe, or as eagles sus-
tain themselves in the wind.”

In Euler’s words:
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” ... I soon found an opportunity to be introduced to a famous professor
Johann Bernoulli... True, he was very busy and so refused flatly to give me
private lessons; but he gave me much more valuable advice to start reading
more difficult mathematical books on my own and to study them as diligently
as I could; if I came across some obstacle or difficulty, I was given permission
to visit him freely every Sunday afternoon and he kindly explained to me
everything I could not understand ...”

The early result that made Euler famous was the exact value for ζ(2) =
∑∞

1
1
n2 and he showed in 1735 that the value is π2

6
and then went on to find

ζ(4), ζ(6), ζ(8), · · · He connected the symbols e, π, and i by the interesting
relation eπi = −1 and which is a special case of his formula eiθ = cos θ+i sin θ
which itself connects the basic trigonometric functions with the exponential
function. He introduced his famous constant which appears in many parts
of mathematics notably in Number Theory and Complex functions

γ = lim
n→∞

(1 +
1

2
+

1

3
+ · · ·+ 1

n
− log n),

and whose nature (transcendental or not) is still unknown. Euler describes
the haphazardness of prime numbers by saying:

”Mathematicians have tried in vain to this day to discover some order in
the sequence of prime numbers, and we have reason to believe that it is a
mystery into which the human mind will never penetrate.

In 1727 he accepted a position at the Academy of Sciences in St. Petersburg,
Russia and became a professor six years later. In 1734 Euler got married and
afterwards he and his wife had 13 children of which, unfortunately, only 5
survived. Euler claimed that he made some of his important mathematical
discoveries while holding a baby. Euler won numerous awards and in a letter
to a friend he wrote:

”I can do just what I wish [in my research]... The king calls me his pro-
fessor, and I think I am the happiest man in the world.”

In 1766 Euler became blind following an illness but did not stop his research.
Indeed, almost half of his research was done while he was blind dictating
his results to a secretary. More than 500 books and articles were published
in his life time. After Euler’s death in 1783, the St. Petersburg Academy
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continued to publish his unpublished works over a period span of 50 years
which shows the enormous quality mathematical work that Euler has done
and which amounts to another 400 books and articles. Nowadays, the ongo-
ing Euler Project is targeted to translating Euler’s work into English and
it is estimated that over 1000 volumes will be required for its completion.

8 19th Century

Bernhard Riemann (1826-1866) was taught by his father until he was 10.
He then attended a school where at one time he showed an interest in mathe-
matics and the director of the school lend Riemann the theory of numbers by
Legendre and Riemann read the 900-page book in 6 days. In 1846 Riemann
attended the University of Göttingen in Germany and then moved to the
University of Berlin where he worked on his general theory of complex vari-
ables. In 1849 he returned to the University of Göttingen and got his Ph.D.
in 1851. In 1859 Riemann was elected to the Berlin Academy of Sciences and
he presented one of his masterpieces ”On the number of primes less than a
given magnitude” which changed the direction of mathematical research in
which he examined the Zeta function as a complex function (unlike Euler
who had consider it only as a real function ) ζ(z) =

∑∞
1

1
nz which as we

have seen was represented by Euler as
∏

primes p(1 − p−z)−1. In this article,
Riemann stated his famous Riemann Hypothesis that we mentioned in a
previous section.
Even though Bernhard Riemann’s 1859 condensed 8-page paper [16] was
his only work spanning Number Theory since his preoccupation was devel-
oping the theory of complex functions (he emphasized the geometric as-
pects of the theory in contrast to the purely analytic approach taken by
another co-founder, Cauchy (1789-1857)), it had a deep impact on Mathe-
matics and in particular on Analytic Number Theory of which we mention
∏

p prime
1

1− 1
pz

=
∑∞

n=1
1
nz previously discovered by Euler but for real z. In

other words, the Riemann zeta function is not only important as a function
of a complex variable but also contains information about prime numbers
and their distribution.
Riemann’s defined zeta function can now be related to Bernoulli numbers
Bk, k = 0, 1, 2, 3... defined by z

ez−1
=

∑∞
0 Bk

zk

k!
as in Euler famous identity

[11], p. 125:

ζ(2k) =
(−1)k−122k−1B2kπ

2k

(2k)!
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and [14], p. 22: if k is a positive integer, then ζ(−k) = −Bk+1

k+1
. In par-

ticular, the latter case implies that ζ(−2k) = 0. The negative even inte-
gers are called trivial zeros of the zeta function. The other zeros (there
are plenty as we shall see later) are called the non-trivial zeros and we’ll
show that they are confined INSIDE what is known as the Critical Strip
{z : 0 ≤ Rez ≤ 1}. To see this, first note that the Euler Product Formula
implies that there are no zeros of ζ(z) with real part > 1 since convergent
infinite products never vanish. Next, using Riemann Functional Equation
π− z

2Γ( z
2
)ζ(z) = π− 1−z

2 Γ(1−z
2
)ζ(1 − z) and the fact that Γ has no zeros in

C, it follows that there are no zeros of ζ(z) with real part < 0 apart from
...,−6,−4,−2. Finally, using ζ(1 + it) 6= 0, ∀t ∈ R (More details about this
coming up) and the Functional Equation again, the result follows.
In the same paper Riemann conjectured that ALL non-trivial zeros of his
zeta function have real part equal to 1

2
(Recent computer calculations have

shown that the first discovered 10 trillion non-trivial zeros, ordered by in-
creasing positive imaginary part, lie on the critical line 1

2
+ it, where t is a

real number; the approximate values of t for the first 6 zeros are
14.13472, 21.02203, 25.01085, 30.42487, 32.93506, and 37.58617). This has been
known as the Riemann Hypothesis.
Now, we elaborate on ζ(1 + it) 6= 0 which is essential for an analytic proof
of a deep theorem known as the Prime Number Theorem:
On the basis of counting primes, one may be led to suspect that the num-
ber of primes less than or equal to a positive number x, denoted by π(x),
increases somehow like x

log x
. As a matter of fact, in 1791 at the age of 14,

Gauss conjectured that limx→∞
π(x) log x

x
= 1. In 1850, trying to settle the

Gauss conjecture, Tchebycheff showed that there exist positive constants c
and C such that

c
x

log x
< π(x) < C

x

log x

for x ≥ 2 with c = .92 and C = 1.11
In 1859, while attempting to find a formula for π(x), Riemann (a student of
Gauss) discovered analytic properties of his zeta function.
Throughout the last decade of the nineteenth century, J. Hadamard be-
came interested in Gauss conjecture and the result was his theory of entire
functions. It was not until 1896 that the Gauss conjecture was settled by
Hadamard and, simultaneously by, de la Vallée Poussin and from then on it
has been known as the Prime Number Theorem. Both Hadamard and
de la Vallée Poussin proved that ζ(1 + it) 6= 0 from which they deduced the
Prime Number Theorem.
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Hadamard and de la Vallée Poussin also showed the converse to be true and
for a while it appeared that the Prime Number Theorem was impossible
to prove without using ζ(1 + it) 6= 0. However, in 1949, Erdös and Selberg
proved the Prime Number Theorem by ”elementary” methods meaning with-
out using functions of a complex variable. Below we state Hadamard and de
la Vallée Poussin key result:
ζ(1 + it) 6= 0, ∀t ∈ R. That is, no zeros of the zeta function could lie on the
line x = 1.

9 20th Century

9.1 Viggo Brun (1885-1978)

Brun was born in Norway. In 1910, he studied at the University of Göttingen.
In 1915, he introduced a number theory method, known as Brun’s sieve,
which showed some relevance in the Goldbach and the twin prime conjec-
tures. In particular, he showed that:

There are infinitely many integers n such that n and n + 2 have at most
nine prime factors

and

All large even integers are the sum of two integers having at most nine prime
factors.

The author naturally feels that Brun came across his theorem that the series
of reciprocals of all twin primes:

1

5
+

1

7
+

1

11
+

1

13
+ · · ·

is convergent [20] while trying to solve the twin prime conjecture where things
went the opposite way (in comparison with the series of reciprocals of all
primes is divergent). During 1919 − 1920, Brun made another contribution
to number theory with his algorithm on multi-dimensional continued frac-
tion and its application to music. In 1923, Brun became a professor at the
Technical University in Norway. In 1946, he moved to the University of Oslo
and stayed there until his retirement in 1955.
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9.2 Roger Apéry (1916–1994)

In 1979, Apéry [1] interestingly proved that ζ(3) =
∑∞

1
1
n3 is an irrational

number using the formula

ζ(3) =
5

2

∞∑

n=1

(−1)n−1

n3
(
2n
n

) ,

which was discovered by Hjortnaes in 1953 [27]. However, finding the exact
value that

∑∞
1

1
n3 converges to is one of the most notorious problems that did

not even yield to Euler. An idea occurred to me and that was to consider the
less difficult problem of finding a representation of ζ(3) in terms of

∑∞
1

1

n3(2nn )
)

only which would be a beautiful result similar to Euler’s ζ(2) = 3
∑∞

1
1

n2(2nn )
.

In [9] I have obtained the following representation

ζ(3) = −
√
3

18
π3 +

3
√
3

4
π

∞∑

1

1

(3n− 2)2
− 3

4

∞∑

1

1

n3
(
2n
n

)

The simply-looking series
∑∞

1
1

(3n−2)2
, however, is hard to evaluate. The idea

is to use the LLL algorithm in the Computer Algebra System Maple to find
the right integer relation which I’ll then prove mathematically thus obtaining
an Euler-type representation for ζ(3).
One should not hope much to find the exact value of ζ(3) as

∑∞
1

1

n3(2nn )
is

unknown even though, [11], we have
∞∑

1

1
(
2n
n

) =
2π

√
3 + 9

27
,

∞∑

1

1

n
(
2n
n

) =
π
√
3

9
,

∞∑

1

1

n2
(
2n
n

) =
π2

18
,

∞∑

1

1

n4
(
2n
n

) =
17π4

3240
,

while there are no known values for
∞∑

1

1

nk
(
2n
n

)

for k > 4.
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9.3 Paul Erdös (1913-1996)

Erdös was born to two Hungarian mathematics teachers. At age three he
could do mental math involving three-digit numbers. At age four he tried to
look for patterns to prime numbers. From then on he was hooked on math-
ematics and got his Ph.D. in mathematics at age 21 in 1934 and was a top
notch mathematician. He traveled to England on a fellowship. During world
war the British government restricted his movements for it feared that his
mathematical correspondence with Hua, a colleague in Communist China,
was code.
With about 1500 published papers, Erdös had a large number of collabora-
tors; about 500 persons who had written articles with him. Those people were
amused to define an Erdös number: everyone who published a co-authored
paper with Erdö is assigned an Erdös number equal to 1. Those who
published an article jointly with a person of Erdös number equal to 1 is as-
signed an Erdös number equal to 2, and so on. Albert Einstein has an
Erdös number equal to 2. No wonder with so many collaborators, that Erdös
traveled continuously throughout his life especially to the United States ac-
companied by two suitcases which contained all his belonging, going from a
university to another, staying at a hotel or at a friend’s house. Erdös was
mainly a problem solver in the following fields of mathematics: Number The-
ory, Combinatorics, and Graph Theory. He did mathematics for an average
of 19 hours a day and was fond of saying:

”A mathematician is a machine for turning coffee into theorems”

At the end of the 19-th century, Hadamard and de La Valle Poussin had
demonstrated the Prime Number Theorem. In 1949, Atle Selberg found an
important inequality leading to an elementary demonstration of the theo-
rem and discussed it with Erdös and this collaboration led, in 1949, to an
elementary proof of the Prime Number Theorem with Selberg. However,
there was a regrettable story that followed that. Prior to the beginning of
the e-mail days, the fastest courier of mathematical news was the frequent
traveler Paul Erdös himself and he mentioned that with Selberg he had ob-
tained an elementary proof of the prime number theorem. Now at that time
mathematicians knew of Erdös, while few had heard of the young Norwegian
Selberg. At a mathematics conference, there was talk about this fresh proof
before it is being prepared by Selberg and Erdös who agreed to publish it
back-to-back in the same journal, explaining each person’s work. A mathe-
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matician who was publicizing this work at the conference mentioned in front
of other mathematicians that ”Erdös and someone else” got an elementary
proof of the Prime Number Theorem. When these exact words reached Sel-
berg, it appeared to him that Erdös had claimed all the credit for himself.
Selberg was not pleased and he rushed and published his proof and published
first. As a result of this monumental proof, Selberg won the Fields Medal for
this work. However, Erdös was not too concerned about the whole episode.
Later, Erdös received the Wolf award in 1984.
Erdös published a new demonstration of Bertrand’s Postulate, that there ex-
ists a prime number between n and 2n, for each n. Tchebychev had already
given a proof of this result during the 19-th century, but Erds proof was the
most simple.

Erdös was not married. Despite more than 1500 papers that he authored
or co-authored in his life, Erdös did not know how to drive a car depend-
ing mainly on friends to do the driving. He invented special vocabulary that
mainly his collaborators understood. For instance, he used the word ”preach-
ing” for someone who is lecturing in mathematics, ”died” for someone who
stopped publishing, ”left” for someone who died, ”captured” for someone
who is married, ”liberated” for someone who is divorced, ”recaptured” for
someone who is married again, ”epsilon” for a small child. Erdös had a
strange personality and at many times when he was on the east coast in the
United States, he would call at 7 a.m local time one of his collaborates in the
west coast and wakes him therefore at 5 a.m. When asked about this once in
an interview, he jokingly replied: ”Good. That means he is home.” He was
mathematically active even at old age. Erdös was fond of saying:

”The first sign of senility is when a man forgets his theorems. The sec-
ond sign is when he forgets to zip up. The third sign is when he forgets to
zip down.”

As Oliver Sacks described him:

”A mathematical genius of the first order. Paul Erdös was totally obsessed
with his subject–he thought and wrote mathematics for nineteen hours a
day until he died. He traveled constantly, living of a plastic bag, and had no
interest in food, sex, companionship, art–all that is usually indispensable to
a human life.”
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Near the end of his life, Erdös did not stop his mathematical activity. In
his philosophy, to die means to stop doing mathematics. He left (died) on
September 20, 1996 while in a mathematics conference at Warsaw, Poland.

10 21st Century

10.1 Andrew Wiles (1953–)

In 1995, and after spending 7 years on it and an additional year fixing it with
his former research student Richard Taylor after a flaw was discovered in the
proof, Wiles fulfilled his 10-year childhood dream by solving the 300-year
old famous Fermat’s Last Theorem that there are no positive integers x, y,
and z satisfying the equation xn + yn = zn for all integers n ≥ 2 (unlike the
well-known Pythagoras Theorem):
Fermat(1601-1665) showed that there are no positive integers satisfying x4+
y4 = z4. and Euler showed that there are no positive integer triples x3+y3 =
z3. Later in the 18th and 19th century, mathematicians showed that there
are no such positive integers for n ≤ 4000. supposedly trying to disprove
Fermat’s Last ”Theorem” and discrediting his unusual statement: ”I have
discovered a truly marvelous proof that it is impossible to separate a cube
into two cubes, or a fourth power into two fourth powers, or in general, any
power higher than the second into two like powers. This margin is too narrow
to contain it.”
It is interesting to observe, in view of Fermat’s remarks, that Wiles proof
[17] is a 109-page proof. Another interesting remark was made by one of my
Lebanese students, after I mentioned that Nada Canaan, Andrew Wiles wife,
was Lebanese. He mentioned that this proof could not have been achieved
without eating the famous Taboleh (Vegetable) dish.

10.2 Harald Helfgott (1977–)

For a long time it was believed that Analytic Number Theory Open Prob-
lems are easy to state and hard to solve. So it was a big surprise to the
mathematics community to see progress in the same summer of 2013 on two
of the most mysterious problems, we will discuss one in this section and the
other in the next section:
In a letter to Euler in 1742, Christian Goldbach conjectured that: Every
natural number n > 5 is a sum of three primes.
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Euler restated the conjecture as: Every EVEN number ≥ 4 is the sum of two
primes.

In 1937, Vinogradov [18] proved that every sufficiently large ODD number
n > no is the sum of three primes.
However, an elaborate study of the proof by Borodzkin [19] (Vinogradov
student) [19] revealed that ”sufficiently large” involves no = 33

15
which is ap-

proximately 107000000. Even though the above estimate was refined by Chen
and Wang [22] to 1043000 ∼ e99012 and later by Liu and Wang [23] to e3100, it
was still too large for cases to be checked by computer.

On the other hand, Harald Helfgott [24] (May 13, 2013) proved that ev-
ery ODD number > 5 is the sum of 3 primes.
Indeed, this result was proven, by Helfgott, for odd numbers > (8.875)1030

but the result has been checked by Platt [25] by computer for odd numbers
< (8.875)1030.
On a related note, in 1966 Jingrun Chen [7] proved that every sufficiently
large EVEN integer is the sum of a prime and the product of at most two
primes.
In 1938, Estermann [26] and Tchudakov [28] proved that almost all EVEN
integers are sums of two primes which is strengthened in 2013 by a result of
Oliveira e Silva, Herzog, and Pardi [29] who have verified using computers
that every even integer up to (4)1018 is the sum of two primes, one suggestion
is to strengthen Chen’s theorem to show that every large EVEN integer is
the sum of two primes.
Using the previous observations, another suggestion is to explicitly find a
positive integer n0 such that every EVEN number n > n0 is the sum of
two primes (presumably n0 > (4)1018) and then check that the desired result
holds for all even numbers m with (4)1018 < m ≤ n0 using a (super)computer
or many (super)computers working in parallel.

10.3 Yitang Zhang (1955–)

Prime numbers differing by 2 are called twin primes. The smallest pair is
(3, 5) and a large pair is

3756801695685.2666669 − 1, 3756801695685.2666669 + 1
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in which each component has 200700 digits. Whether twin primes are finite
or infinite in number is one of the most famous problems in number theory.
The twin prime conjecture states that the number of twin primes is infinite.
Many attempts to prove or disprove this 2300-year old conjecture have failed
including Brun’s result [20] that

∑

p,p+2primes
1
p
is finite. A method to show

the twin prime conjecture is to show that lim infn→∞(pn+1 − pn) = 2. In
2005, Goldston, Yildirim, and Pintz [30] obtained a major and deep result
[30] that, with pn denoting the nth prime number, lim infn→∞

pn+1−pn
log pn

= 0; in
other words, for every ǫ > 0, there exist infinitely many pairs of consecutive
primes pn and pn+1 such that pn+1− pn < ǫ log pn. Using Goldston, Yildirim,
and Pintz result, Zhang [21] succeeded in showing the spectacular result:

lim inf
n→∞

(pn+1 − pn) < 70000000

(One way to say that is that the gap between successive prime numbers re-
mains finite).
This is a spectacular result because the finite upper bound 70 million is not
important and as a matter of fact, the Polymath 8 project, started by Fields
medalist Terence Tao at UCLA, has reduced this upper bound on the sepa-
ration to 246 in relation to 2 for which the Prime Number Conjecture would
be true.
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