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Abstract

We generalize Wallis Formula using the Riemann zeta function.

1 Introduction

Wallis Formula is
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Now let z = σ + it. For σ > 1, the Riemann zeta function ζ is defined by

ζ(z) =
∞∑

n=1

1
nz .

We have | 1
nz | = 1

|ez log n| = 1
|eσ log n| = 1

nσ . By Weierstrass test, the series
∞∑

n=1

1
nz

converges uniformly in the half-plane σ > 1 and hence on every compact sub-
set of this half-plane. Thus ζ is analytic in the half-plane σ > 1 being the sum
function of a uniformly convergent series of analytic functions. With some work,
this function can be continued analytically to all complex z �= 1. As a result,
the zeta function is analytic everywhere except for a simple pole at z = 1 with
residue 1. It is well-known that the only real zeros of the zeta function are on
the negative even integers and are called trivial zeros.
When talking about the zeta function, it would be a miss not to mention the
following famous conjecture:
The Riemann Hypothesis. [3] ALL NON-TRIVIAL ZEROS of the zeta
function have real part equal to 1

2 .

Key words and phrases: Wallis Formula, Zeta function.
AMS (MOS) Subject Classifications: 30D05, 30D15, 11M06, 11M38,
11M50.
ISSN 1814-0432, 2015, http://ijmcs.future-in-tech.net



50 B. Ghusayni

The completed zeta function (or generically the xi-function), originally de-
fined by Riemann [3], is

ξ(z) =
1
2
z(z − 1)π− z

2 Γ(
z

2
)ζ(z)

The success of our proof (generalization) hinges on first finding a product repre-
sentation of the completed zeta function which then is used in finding a product
representation of the zeta function. To have a relatively self-contained paper we
mention a few definitions:

Let f(z) be an entire function. The maximum modulus function, denoted
by M(r), is defined by M(r) =max{|f(z)| : |z| = r}.

Let f(z) be a non-constant entire function. The order ρ of f(z) is defined
by

ρ = lim sup
r→∞

log log M(r)
log r

.

The order of any constant function is 0, by convention.

An entire function f(z) of positive order ρ is said to be of type τ if

τ = lim sup
r→∞

log M(r)
rρ

.

The following [1] are some important properties of the completed zeta func-
tion:

1. ξ(z) = ξ(1− z). This Functional Equation shows that the function ξ(z) is
symmetric about the critical line Re(z) = 1

2 .

2. The function ξ(z) is entire.

3. The function ξ(z) is of order one and infinite type.

4. The function ξ(z) has infinitely many zeros.

Remark 1.1. It is clear now that the completed zeta function ξ is more conve-
nient to use instead of the zeta function ζ since using the definition of ξ removes
the simple pole of ζ at z = 1 and as a result the theory of entire functions can
be applied if needed, to ξ. In addition, since none of the factors of ξ except ζ
has a zero in C − {0, 1}, no information is lost about the non-trivial zeros.

The Riemann Hypothesis can therefore be stated as:
The Riemann Hypothesis using the completed zeta function. ALL
ZEROS of ξ(z) are on the critical line Re(z) = 1

2 .
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2 Main Theorem

We begin by finding a canonical representation of ξ(z) :
ξ(z) is an entire function of order one and infinite type. Since the zeta function
ζ(z) has a simple pole with residue 1 at z = 1, ξ(1) = 1

2 . Now, using the
functional equation ξ(z) = ξ(1 − z), ξ(0) = 1

2 Then, by ([2] p. 47), we have

ξ(z) = eAeBz
∞∏

n=1

(1 − z

zn
) exp

z

zn
,

where again {zn}∞1 are the non-zero zeros of ξ(z) and hence, using the functional
equation and the definition of the completed zeta function, are the non-trivial
zeros of ζ(z) which are indeed in the critical strip and A and B are complex
constants.
Now ξ(0) = 1

2 implies that eA = 1
2 and so we can write

ξ(z) =
1
2
eBz

∞∏
n=1

(1 − z

zn
) exp

z

zn
.

The effort to find B using ξ(1) = 1
2 leads to

1 = eb
∞∏

n=1

(1 − 1
zn

)e
1

zn .

Consider the product

p =
∞∏

n=1

(1 − 1
zn

)e
1

zn .

Then

pz =
∞∏

n=1

(1 − 1
zn

)ze
z

zn .

Therefore,

ξ(z) =
1
2
eBzpz

∞∏
n=1

(1 − z

zn
)(1 − 1

zn
)−z.

Now ξ(1) = 1
2 implies that eBp = 1 and our identity reduces to the following

representation of ξ(z) :

ξ(z) =
1
2

∞∏
n=1

(1 − z

zn
)(1 − 1

zn
)−z.

Using the product representations of ξ(z) and 1
Γ(z) with the definition of ξ(z)

give the following explicit representation for ζ(z)({zn} denotes the sequence of
non-trivial zeros of ζ(z)) :

ζ(z) =
1

z − 1︸ ︷︷ ︸
for singularity

π
z
2

∞∏
n=1

(1 +
z

2n
)

︸ ︷︷ ︸
for trivial zeros

(1 − z

zn
)

︸ ︷︷ ︸
for non-trivial zeros

(1 +
1
n

)−
z
2 (1 − 1

zn
)−z.
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3 Wallis Formula as an easy corollary

Our discovered explicit representation above of the zeta function serves as a
generalization of Wallis Formula as the following corollary shows:

Corollary 3.1. Wallis Formula
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Proof. For z ∈ C−{0, 1}, we can rewrite the representation in the theorem
as:

(z − 1)ζ(z) =
π

z
2

z
2

∞∏
n=1

(1 − z

zn
)(1 − 1

zn
)−z

︸ ︷︷ ︸
2ξ(z) entire hence continuous

z

2

∞∏
n=1

(1 +
z

2n
)(1 +

1
n

)−
z
2

︸ ︷︷ ︸
1

Γ( z
2 ) entire hence continuous

.

The result now follows using limz→1(z − 1)ζ(z) = 1.
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