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Motivated by Ap	ery�s proof� F� Beukers 
� later gave a shorter proof of the irra�

tionality of ���� by means of double and triple integrals� Beukers� proof hinged on

his formula
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The value of ����� however� remains unknown� let alone the values of � at other

larger odd integers�
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are easy to prove 
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There is an interesting identity due to Comtet 
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for integers k � ��

In section  we use Beukers� formula �� to �nd a simple representation of ����

in terms of a single integral instead of a double integral� In section � we obtain a

series representation for ����� The author hopes that some representation of ����

in the literature can be used to evaluate �����

�� An Integral Representation of ����� Let us write Beukers� formula as
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and consider �x� y� � ��� ��� ��� ���

For a �xed y� substitute w � xy � � in the innermost integral� Then
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since y � � � ��� �� and absolute convergence implies convergence� Using the func�

tional equation for the dilogarithm
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It is worth mentioning that� by making a simple change of variable� the above

integral representation can be written as
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where it is easy to see that

Z �

�

logx

x� �
dx �

��

�
� ����

�� A Series Representation of ����� Using the well�known formula 
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On the other hand a simple integration by substitution followed by integration by

parts yields
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even at boundary points except for z � �� i�e� except at the points z � eix with
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Applying Abel�s theorem for trigonometric series we get
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Since the middle term is �
����� 
��� we consequently have the following series

representation
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