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Abstract: Prime numbers differing by 2 are called twin primes. The twin
prime conjecture states that the number of twin primes is infinite. Many at-
tempts to prove or disprove this 2300-year old conjecture have failed. The
objective of this paper is two-fold. We first tie the twin prime conjecture to
complex variable theory. We then look at some of the most recent progress on
it.
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1. Introduction

Whether twin primes are finite or infinite in number is one of the most famous
problems in number theory. Brun [4] showed that

∑
n

1
pn

, where pn and pn + 2

are prime numbers, is finite. In fact, the sum
∑

n( 1
pn

+ 1
pn+2), known as Brun’s

constant B, has been calculated by Shanks and Wrench [22] and by Brent [3]
to be approximately 1.90216054.

Definition. Let f(z) be an entire function. The maximum modulus func-

tion, denoted by M(r), is defined by M(r) = max {|f(z)| : |z| = r}.

Definition. Let f(z) be a non-constant entire function. The order ρ of
f(z) is defined by
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ρ = lim sup
r→∞

log log M(r)

log r
.

The order of any constant function is 0, by convention.

Definition. Let f(z) be an entire function. If |f(z)| ≤ CeA|z| for some
positive constants A and C and all values of z, we say that f(z) is of exponential

type.

Remark 1.1. If an entire function f(z) is of exponential type, then f(z)
is of order ≤ 1.

Definition. The exponential type σ of an entire function f(z) of exponential
type is defined by

σ = lim sup
r→∞

log M(r)

r
.

The zero function has exponential type 0, by convention.

Definition. An entire function f(z) of positive order ρ is said to be of type

τ if

τ = lim sup
r→∞

log M(r)

rρ
.

Terminology. If 0 ≤ τ < ∞, then f(z) is said to be of finite type.

If τ = 0, then f(z) is said to be of minimal type.

If 0 < τ < ∞, then f(z) is said to be of normal type.

If τ = ∞, then f(z) is said to be of infinite or maximal type.

Definition. Let z1, z2, · · · be a sequence of non-zero complex numbers. The
greatest lower bound of positive numbers α for which

∑∞
0

1
|zn|α

is convergent is

called the exponent of convergence of the sequence {zn} and is denoted by ρ1.
The smallest positive integer α for which the series is convergent is denoted by
p + 1 and p is called the genus of {zn}.

The infinite product
∏

G( z
zn

, p), where

G(u, p) = (1 − u)e
u+ u2

2
+···+ up

p

and

G(u, 0) = 1 − u

is called a canonical product of genus p.

The original idea appeared in [7] where the author related the twin prime
conjecture to complex variable theory as follows:
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Since B < ∞ the canonical product
∏

n(1− z
pn

) is an entire function (see for
Example [25], p. 54). Moreover, if the number of twin primes was finite, then∏

n(1− z
pn

) would be a real polynomial and thus of order (see for Example [25],
p. 64). 0. Consequently, if

∏
n(1 − z

pn
) has a nonzero order, then the number

of twin primes is infinite.

2. Auxiliary Results

We will use the following results.

Theorem 2.1. (Borel’s Theorem, see [8], p. 27, for a proof) A canonical
product of genus 0 is an entire function of exponential type 0.

Theorem 2.2. (Hadamard Factorization Theorem, See [8], pp. 42-45, for
a proof) If f(z) is an entire function of order ρ with a zero at 0 of multiplicity
m, then

f(z) = zmeQ(z)
∞∏

1

G(
z

zn
, p),

where Q(z) is a polynomial of degree q < ρ.

Definition. The genus of the function f(z) in the Hadamard Factorization
Theorem is defined as max(p, q).

Theorem 2.3. (see [18], Theorem 12, p. 22) a) The order of the product
of two entire functions of different orders is equal to the larger of the orders of
the factors, and the type is equal to the type of the function that has the larger
order.

b) The product of two entire functions of the same order, one having normal
type σ and the other having minimal type, is an entire function of the same
order and type σ.

c) The product of two entire functions of the same order ρ, one having
maximal type and the other having at most normal type, is an entire function
of order ρ and maximal type.

Suppose {pn} is a sequence of positive numbers (the sequence may be finite).
For infinite sequences we suppose further that

∑∞
n=1

1
pn

converges (if {pn}
k
n=1

is a finite sequence, the corresponding convergence condition that
∑k

n=1
1
pn
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converges is clearly there). Finally, let A =
∑

n
1
pn

. The canonical product
∏

n

(1 −
z

pn
)e

z
pn

is an entire function [25], p. 55. The following lemma was proved by the author
in [7]. Since we need something from its proof for the current paper, we repeat
the proof here:

Lemma 2.4. The order of
∏

n(1 − z
pn

)e
z

pn is 1.

Proof. The canonical product
∏

n(1 − z
pn

)e
z

pn is an entire function [25], p.

55. Let a > 1. Since pa
n > pn,

∑
n

1
pa

n
< ∞. Thus

∑
n

1
pa

n
< ∞ when a ≥ 1.

Consequently, the genus of the zeros of
∏

n(1 − z
pn

) is 0. By the Hadamard
Factorization Theorem and the definition of the genus of a function it follows
that the genus of

∏
n(1 − z

pn
) is also 0. By Borel’s Theorem,

∏
n(1 − z

pn
) is of

exponential type 0. In particular, since
∏

n(1− z
pn

) is of exponential type, it is
of order k ≤ 1 (this is what we need for the current paper to conjecture that
the order of

∏
n(1 − z

pn
) is 1). We now consider two cases:

Case 1. k < 1: Since the order of eAz is 1, it follows from Theorem 2.2(a)
that ∏

n

(1 −
z

pn
)e

z
pn = eAz

∏

n

(1 −
z

pn
)

is 1.

Case 2. k = 1: Since the definition of type and exponential type agree for
functions of order 1, the type of

∏
n(1 − z

pn
) is 0. Clearly, the type of eAz is

A > 0. Thus, from Theorem 2.3(b), the order of
∏

n

(1 −
z

pn
)e

z
pn = eAz

∏

n

(1 −
z

pn
)

is 1. The proof of the lemma is complete.

Lemma 2.5. The type of
∏

n(1 − z
pn

)e
z

pn is Brun’s Constant B, which is
approximately 1.9.

Proof. ∏

n

(1 −
z

pn
)e

z
pn = eBz

∏

n

(1 −
z

pn
) .

Using the generalized triangle inequality if the number of twin primes is finite
and both a limiting process and the generalized triangle inequality if the number
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of twin primes is infinite, we get

|f(z)| =
∏

n

|1 −
z

pn
|e

Rez
pn ≤

∏

n

(1 +
|z|

pn
)e

|z|
pn .

As a result

M(r) =
∏

n

(1 +
r

pn
)e

r
pn .

Thus the type

τ = lim sup
r→∞

log M(r)

r
=

∑

n

1

pn

+ lim sup
r→∞

∑

n

log(1 + r
pn

)

r

= B + lim sup
r→∞

∑

n

log(1 + r
pn

)

r
.

Since log(1 + x) ≤ x for x > 0, we have log |
1+ r

pn

r | ≤ 1
pn

for all r > 0. Since∑
n

1
pn

< ∞ (indeed is B) it follows from Weierstrass criterion for uniform

convergence that
∑

n

log(1+ r
pn

)

r is uniformly convergent for all r > 0.

Now

τ = lim
r→∞

log M(r)

r
= B +

∑

n

lim
r→∞

log(1 + r
pn

)

r
= B . �

3. The Other Half

Let π(x) denote the number of primes p ≤ x. The prime number theorem (see
for instance [8]) states that

lim
x→∞

π(x) log x

x
= 1 .

Theorem 3.1. limx→∞
π(x) log x

x = 1 ⇔ limn→∞
pn

n log n = 1.

Proof. (⇒) Let x = pn. Then limn→∞
π(pn)

pn/ log pn
= 1. Since π(pn) =

n, limn→∞
n

pn/ log pn
= 1. Then there is n0 ∈ N such that

n ≥ n0 ⇒ n ≥
1

2

pn

log pn
.

Then

n ≥ n0 ⇒ pn ≤ 2n log pn .
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Therefore

n ≥ n0 ⇒ log pn ≤ log 2 + log n + log log pn .

Hence

n ≥ n0 ⇒ log pn(1 −
log log pn

log pn
) ≤ log 2 + log n ,

or

n ≥ n0 ⇒
log pn

log n
(1 −

log log pn

log pn
) ≤

log 2

log n
+ 1 .

Now, since limn→∞
log log pn

log pn
= 0 and limn→∞

log 2
log n , given ǫ > 0, there exists

n1 ∈ N such that

n ≥ n1 ⇒ 1 − ǫ ≤
log pn

log n
≤ 1 + ǫ .

Since ǫ was arbitrary it follows that

lim
n→∞

log pn

log n
= 1 .

Using this we can now write

lim
n→∞

n

pn/ log n
= 1 .

That is,

lim
n→∞

pn

n log n
= 1 .

(⇐) For any x, there exist prime numbers pn and pn+1 such that pn ≤ x <
pn+1. Hence π(x) = n. Since the function f(x) = x

log x is increasing,

pn

log pn
≤

x

log x
≤

pn+1

log pn+1
.

Multiplying by 1
n we get

pn

n log pn
≤

x

π(x) log x
≤

pn+1

n log pn+1
.

Taking limits as n → ∞ (and hence x → ∞) and using the hypothesis, the
result follows and the proof is complete.

By the above theorem it follows that the prime number theorem implies
that pn ∼ n log n, n → ∞ from which we can deduce that

L := lim inf
n→∞

pn+1 − pn

log pn
≤ 1 .

Paul Erdös [6] had shown in 1940 that L < 1, improved in 1954 by Ricci [21]
to L ≤ 15

16 , improved in 1966 by Bombieri and Davenport [2] to L ≤ 0.4665 . . . ,
improved in 1972 by Pilt’ai [20] to L ≤ 0.4571, improved in 1975 by Uchiyama
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[23] to L ≤ 0.4542, improved in 1977 by Huxley in several steps [22,23] to
L ≤ 0.44254 . . . , improved in 1984 by Huxley [17] to L ≤ 0.4393, improved in
1988 by Maier [19] to L ≤ 0.2486 . . . Recently, Goldston, Pintz and Yildirim
[14], [12], [13], [10] have obtained the following major and deep result: major
because it is an approximation to the twin prime conjecture which can be
expressed as lim infn→∞(pn+1 − pn) = 2 and deep because its proof required 32
pages.

Theorem 3.2.

L := lim inf
n→∞

pn+1 − pn

log pn
= 0.

Remark 3.3. A simpler proof was later obtained (still 8 pages long) with
the help of Motohashi [11].

Remark 3.4. It is interesting to note that in 1931 Westzynthius [24]
proved that

lim sup
n→∞

pn+1 − pn

log pn
= ∞ .

Remark 3.5. In the abstract to his talk “Revenge of the twin prime
conjecture” at MathFest 2007, Daniel Goldston states that “two years ago Pintz,
Yildirim, and I proved that there always exist primes that are very close together
- very close meaning much closer than the average distance between neighboring
primes. Our method also proves that if the primes are well distributed in
arithmetic progressions then one can obtain results not too far from the twin
prime conjecture. For example, if the Elliott-Halberstam Conjecture is true
then there are infinitely many pairs of primes with difference 16 or less. With
these successes I was hopeful that before too long our method could be pushed
to unconditionally show that there are infinitely often pairs of primes closer
than some fixed bounded distance, i.e. bounded gaps, a giant step towards the
twin prime conjecture. In this talk I will discuss the method and why perhaps
further progress towards bounded gaps and the twin prime conjecture is going
to be difficult, although I will be delighted to be proved wrong.”

This remark motivates the next section.

4. Future Work

For an arbitrary sequence {an} in [−∞,∞], we have
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lim sup
n→∞

(−an) = inf
n

sup
k≥n

{−ak} = inf
n
{− inf

k≥n
ak)

= − sup
n

( inf
k≥n

ak) = − lim inf
n→∞

an.

It follows from Goldston, Pintz and Yildirim Theorem that

lim sup
n→∞

pn − pn+1

log pn
= 0.

Can this be related to

lim sup
r→∞

log log M(r)

log r

with the latter being, by definition,

lim
r→∞

{sup
t≥r

log log M(t)

log t
}

to show that the order of
∏

n(1 − z
pn

) is ≥ 1 thus proving the twin prime
conjecture?
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