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Abstract

For over 300 years the values of the zeta function at odd integers

greater than or equal to 3 have remained a mystery. The PSLQ algo-

rithm which is implemented in the Computer Algebra System Maple

is considered one of the top ten algorithms of the 20th Century. We

employ PSLQ to discover an Euler-type identity for such an odd ar-

gument.

1 Introduction

The function z
ez−1

clearly has its nearest singularities at z = −2πi and
z = 2πi and so is analytic in the disk |z| < 2π. Therefore we can represent it

there as z
ez−1

=
∞
∑

0

Bn
zn

n!
. In the coefficients B′

ns are nothing but the Bernoulli

numbers the first of which are B0 = 1, B1 = −1
2
, B2 = 1

6
, B3 = 0, B4 =

− 1
30

, B5 = 0, B6 = 1
42

, B7 = 0, B8 = − 1
30

, B9 = 0 and B10 = 5
66

. Now let us
prove, in general, that B2k+1 = 0 for k = 1, 2, 3, ... First, t

et−1
+ t

2
= t

2
coth t

2

is an even function. Next, t
2
coth t

2
=

∑∞
0 Bn

tn

n!
+ t

2
=

∑∞
n=0,n6=1 Bn

tn

n!
.

Now replacing t with −t we get t
2
coth t

2
=

∑∞
n=0,n6=1(−1)nBn

tn

n!
. Therefore,

(−1)nBn = Bn for n = 0, 2, 3, 4, ... which for odd n = 2k + 1 implies the

result. The Riemann Zeta function ζ is defined by ζ(z) =
∞
∑

k=1

1
kz . Set

z = x + iy. Now | 1
kz | = 1

|ez log k| = 1
|ex log k| = 1

kx . So the series
∞
∑

k=1

1
kz converges

absolutely in the half-plane x > 1. Moreover, by Weierstrass test, this series
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converges uniformly on every compact subset of this half-plane. This func-
tion can be continued analytically to all complex z 6= 1 (For z = 1, the series
is the harmonic series which diverges to infinity. As a result, the zeta func-
tion is a meromorphic function of the complex variable z, which is analytic
everywhere except for a simple pole at z = 1 with residue 1.)
For completeness we mention the known results ζ(0) = −1

2
and ζ(−n) =

−Bn+1

n+1
for natural numbers n. In particular, ζ(−2n) = 0 for natural num-

bers n, (these are called the trivial zeros of the zeta function) and ζ(1 −
2n) = −B2n

2n
. Moreover, as an aside, we state the following interesting

result [5] : ζ(1
2
) = (

√
2 + 1)

∑∞
1

(−1)n

n
1
2

. For a more interesting stuff, Eu-

ler, one of the most celebrated mathematicians of all times, showed that

ζ(2n) = (−1)n−122n−1B2nπ2n

(2n)!
(for a proof see for instance [7], pp. 124 − 125. It

must be noted that Euler (1707−1783) had considered the zeta function only
as a real function whereas Riemann (1826−1866) had examined it as a com-
plex function in his masterpiece ”On the number of primes less than a given
magnitude” where also he stated his famous conjecture that all non-trivial
zeros of the zeta function lie on the line x = 1

2
(Riemann Hypothesis)).

Thus, for example,
∑∞

1
1
k2 = π2

6
,

∑∞
1

1
k4 = π4

90
,

∑∞
1

1
k6 = π6

945
,

∑∞
1

1
k26 =

1315862
11094481976030578125

π26. However, Euler was unable to prove any similar results
for odd arguments but conjectured [6] that ζ(3) :=

∑∞
k=1

1
k3 = α(ln 2)2 +

β π2

6
ln 2, where α and β are rational numbers. For over 300 years the exact

value of the convergent series
∑∞

k=1
1
k3 has remained a mystery despite the

following interesting results:

• ζ(3) = −5
6
(ln 1+

√
5

2
)3 + 1

6
π2 ln 1+

√
5

2
+ 5

4

∑∞
n=1

1

n3( 1+
√

5
2

)2n

(Landen [11], 1780);

• ζ(3) = 7π3

180
− 2

∑∞
n=1

1
n3(e2nπ−1)

(Lerch [12], 1901);

• ζ(3) = 5
2

∑∞
n=1

(−1)n−1

n3(2n
n )

(R. Apéry [1], 1979)

• ζ(3) = 8
7

(

(ln 2)3

3
+

∑∞
n=1

1
2n ( ln 2

n2 + 1
n3 )

)

(W. Janous [10], 2006)

Remark 1.1. This author categorized Janous formula as an interesting one
for the following reasons:
Clearly the numerical series

∑∞
n=1

1
2n

ln 2
n2 and

∑∞
n=1

1
2n

1
n3 are series of positive

terms which converge by the comparison test with the series
∑∞

n=1
1
n2 and
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∑∞
n=1

1
n3 respectively. Thus ζ(3) = 8

7
(ln 2)3

3
+ 8

7
ln 2

∑∞
n=1

1
2nn2 + 8

7

∑∞
n=1

1
2nn3 .

Using the well-known formula
∑∞

n=1
1

2nn2 = π2

12
− (ln 2)2

2
, we finally get ζ(3) =

−4
21

(ln 2)3+ 2
21

π2 ln 2+ 8
7

∑∞
n=1

1
2nn3 which in this derived form, to this author’s

knowledge, is the closest to the above-mentioned Euler’s conjecture.

2 PSLQ in Action

In [3], this author obtained the following result

ζ(3) = −
√

3

18
π3 +

3
√

3

4
π

∞
∑

1

1

(3n − 2)2
− 3

4

∞
∑

1

1

n3 (2n
n )

.

We improve our result by using, as a tool, the most efficient algorithm avail-
able at this time which is the PSLQ Integer Relation Algorithm and which is
implemented in Maple (The PSLQ Algorithm, due to mathematician Hela-
man Ferguson, was featured in Science (October 2006) as ”the best-known
integer relation algorithm” and was named by Computing in Science and
Engineering (January 2000) as ”one of the top ten algorithms of the 20th
century” [2]).

Definitions. Let r ∈ R
n be a given vector. We say that the vector

c ∈ Z
n is an integer relation for r if

n
∑

1

ckrk = 0 with at least one non-zero

ck. An integer relation algorithm searches therefore for such a non-zero
vector c.

The PSLQ algorithm either finds the integers or obtains lower bounds on
the sizes of coefficients for which such a relation is valid. Usually, a high de-
gree of numerical precision is needed for PSLQ to run efficiently. Otherwise,
”large” coefficients result suggesting failure in discovering a relation. Let us
try to discover the familiar identity cos(3x) = 4 cos3 x−3 cos x, to familiarize
ourselves with the process (The function cos[(2n − 1)x] can be written as a
linear combination of odd powers cosx, ..., cos2n−1 x):
> with(IntegerRelations):Digits:=50;x := sqrt(3)/2;
> PSLQ([cos(3 ∗ x), seq(cos(x) ∧ (2 ∗ j − 1), j = 1..5)]);
[1, 3,−4, 0, 0, 0]
Note that the point of the PSLQ algorithm is to find vectors whose compo-
nents are small. As a result, we can write cos(3x) + 3 cos x − 4 cos3 x = 0;
that is, cos(3x) = 4 cos3 x− 3 cos x. Let us confirm our result experimentally
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with another value of x:
> with(IntegerRelations):Digits:=50;x := 0.5;
> PSLQ([cos(3 ∗ x), seq(cos(x) ∧ (2 ∗ j − 1), j = 1..5)]);
[−1,−3, 4, 0, 0, 0]

Our idea is now to use the PSLQ algorithm to experimentally find an
integer relation among carefully selected series whereas if we suspect a series
can be expressed as a rational linear combination of other series, then we
evaluate all of these series at some random value. Afterwards, to confirm our
result-still experimentally-we use the PSLQ algorithm at another value to
produce another set of coefficients. If our second response is a scaled version
of the first one, then we conjecture that such a relation has been found.
Finally, we prove our conjecture mathematically. Here is an illustration of
PSLQ on something we know involving series:
>with(IntegerRelations): Digits:=50;

Digits := 50

> x := sqrt(3)/2;

x :=

√
3

2

> PSLQ([sum(1/(3 ∗ n − 2) ∧ 2, n = 1..infinity), seq(cos(x) ∧ (2 ∗ j −
1), j = 1..5)]); (That was an intentional random application resulting in
large numbers)

[263097680, −436660359, 220554598, −543586674, −183108721, −69263272]

> PSLQ([sum(1/n ∧ 2, n = 1..infinity), (ln(2)) ∧ 2, P i ∧ 2]); (That was an
intentional application resulting in expected small numbers)

[−6, 0, 1]

> PSLQ([sqrt(3) ∗ Pi ∧ 3, sum(1/n ∧ 3, n = 1..infinity), sum(1/(n ∧ 3 ∗
binomial(2 ∗n, n)), n = 1..infinity), sum(sqrt(3) ∗Pi ∗ 1/(3 ∗n− 2)∧ 2, n =
1..infinity)]);

[2, 36, 27, −27]

Let us confirm our result experimentally with another value of x:
> with(IntegerRelations):Digits:=50;

Digits := 50
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> x := 0.45;
x := 0.45

> PSLQ([sqrt(3) ∗ Pi ∧ 3, sum(1/n ∧ 3, n = 1..infinity), sum(1/(n ∧ 3 ∗
binomial(2 ∗n, n)), n = 1..infinity), sum(sqrt(3) ∗Pi ∗ 1/(3 ∗n− 2)∧ 2, n =
1..infinity)]);

[2, 36, 27, −27]

The discovered identity via PSLQ is:

2
√

3π3 + 36
∞

∑

n=1

1

n3
+ 27

∞
∑

n=1

1

n3 (2n
n )

− 27
√

3π
∞

∑

n=1

1

(3n − 2)2
= 0

(a mathematical proof of this was supplied by this author in [8].)

3 New Result

>with(IntegerRelations):Digits:=10;x := sqrt(3)/2; t := ln(2)∧2; u := sqrt(2)∗
Pi; v := sum(1/(n∧3∗binomial(2∗n, n)), n = 1..infinity); PSLQ([t, u, v, sum(Pi∗
sqrt(3) ∗ 1/(3 ∗ n + 1) ∧ 2, n = 0..infinity)]);

Digits := 10

x :=

√
3

2

t := ln(2)2

u :=
√

2 π

v :=
1

2
hypergeom([1, 1, 1, 1], [

3

2
, 2, 2],

1

4
)

[7, −9, 0, 6]

Let us confirm our result experimentally with another value of x:
>with(IntegerRelations):Digits:=10;

Digits := 10

> x:=1.342567898;
x := 1.342567898



26 B. Ghusayni

t := ln(2) ∧ 2; u := sqrt(2) ∗ Pi; v := sum(1/(n ∧ 3 ∗ binomial(2 ∗ n, n)), n =
1..infinity); PSLQ([t, u, v, sum(sqrt(3)∗Pi∗1/((3∗n+1)∧2), n = 0..infinity)]);

t := ln(2)2

u :=
√

2 π

v :=
1

2
hypergeom([1, 1, 1, 1], [

3

2
, 2, 2],

1

4
)

[7, −9, 0, 6]

The discovered identity, using PSLQ, is

7 ln2 2 − 9
√

2π + 6
√

3π
∞

∑

1

1

(3n − 2)2
= 0.

4 General Results

Recall that ζ(3) = 7π3

180
− 2

∑∞
n=1

1
n3(e2nπ−1)

. In this section we use PSLQ to
try to get results of this type for odd values other than 3 :
Let us start with 5 :
>with(IntegerRelations):Digits:=50;

Digits := 50

> x := sqrt(3)/2;

x :=

√
3

2

> PSLQ([sum(1/n∧ 5, n = 1..infinity), P i∧ 5, sum(1/(n∧ 5 ∗ (exp(2 ∗Pi ∗
n) − 1)), n = 1..infinity)]);

[239548242096527, −804499191833, −1176685284797976]

> PSLQ([sum(1/n ∧ 5, n = 1..infinity), P i ∧ 5, sum(1/(n ∧ 5 ∗ (exp(2 ∗
Pi ∗ n) − 1)), n = 1..infinity), sum(1/(n ∧ 5 ∗ (exp(2 ∗ Pi ∗ n) + 1)), n =
1..infinity)]);

[−1470, 5, −3024, −84]

> x := 1.3456789;
x := 1.3456789
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> PSLQ([sum(1/n ∧ 5, n = 1..infinity), P i ∧ 5, sum(1/(n ∧ 5 ∗ (exp(2 ∗
Pi ∗ n) − 1)), n = 1..infinity), sum(1/(n ∧ 5 ∗ (exp(2 ∗ Pi ∗ n) + 1)), n =
1..infinity)]);

[−1470, 5, −3024, −84]

Thus −1470
∑∞

n=1
1
n5 + 5π5 − 3024

∑∞
n=1

1
n5(e2πn−1)

− 84
∑∞

n=1
1

n5(e2πn+1)
= 0.

Consequently, ζ(5) = 1
294

π5 − 72
35

∑∞
n=1

1
n5(e2πn−1)

− 2
35

∑∞
n=1

1
n5(e2πn+1)

.

Now for ζ(7) :
>with(IntegerRelations):Digits:=50;

Digits := 50

> x := sqrt(3)/2;

x :=

√
3

2

> PSLQ([sum(1/n∧ 7, n = 1..infinity), P i∧ 7, sum(1/(n∧ 7 ∗ (exp(2 ∗Pi ∗
n) − 1)), n = 1..infinity)]);

[−56700, 19, −113400]

> x := 0.123456;
x := 0.123456

> PSLQ([sum(1/n∧ 7, n = 1..infinity), P i∧ 7, sum(1/(n∧ 7 ∗ (exp(2 ∗Pi ∗
n) − 1)), n = 1..infinity)]);

[−56700, 19, −113400]

Thus −56700
∑∞

n=1
1
n7 + 19π7 − 113400

∑∞
n=1

1
n5(e2πn−1)

= 0. Consequently,

ζ(7) = 19
56700

π7 − 2
∑∞

n=1
1

n7(e2πn−1)
. The following is an interesting result of

Lerch in 1901 from which our PSLQ-discovered formula for ζ(7) follows im-
mediately by taking n = 3 :

Theorem 4.1. [12] If n is an ODD positive integer, then

ζ(2n + 1) =
(2π)2n+1

2

n+1
∑

k=0

(−1)k+1 B2k

(2k)!

B2n+2−2k

(2n + 2 − 2k)!

−2
∞

∑

k=1

1

k2n+1(e2πk − 1)
.
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(This result can be easily phrased as: If n is an ANY positive integer, then

ζ(4n + 3) =
(2π)4n+3

2

2n+2
∑

k=0

(−1)k+1 B2k

(2k)!

B4n+4−2k

(4n + 4 − 2k)!

−2
∞

∑

k=1

1

k4n+3(e2πk − 1)
.)

The following result was stated by Ramanujan and later proved by others
including Grosswald [9]:

Theorem 4.2. [13] Let n be a positive integer and α and β are positive
numbers with αβ = π2. Then

1

αn
{1

2
ζ(2n+1)+

∞
∑

k=1

1

k2n+1(e2kα − 1)
} =

(−1)n

βn
{1

2
ζ(2n+1)+

∞
∑

k=1

1

k2n+1(e2kβ − 1)
}

+22n

n+1
∑

k=0

(−1)k+1 B2k

(2k)!

B2n+2−2k

(2n + 2 − 2k)!
αn+1−kβk

Remark 4.3. Lerch’s result follows easily from Ramanujan’s result by taking
α = β = π. However, our PSLQ-discovered formula for ζ(5) does not follow
from Ramanujan’s formula as it yields 0 = 0 for n = 2. As Lerch’s for-
mula covers the cases ζ(3), ζ(7), ζ(11), ζ(15), ζ(19), ...; that is, ζ(4n+3), n =
0, 1, 2, 3, ..., our interest is now shifted towards a formula complementing
those to cover the remaining cases ζ(5), ζ(9), ζ(13), ζ(17), ...; that is, ζ(4n +
1), n = 1, 2, 3, ... Even though the following interesting two formula were men-
tioned in [4] and [3] respectively, our PSLQ-discovered formula for ζ(5) is
still obviously not an outcome of them due to the last terms in them:

ζ(4n + 1) =
(2π)4n+1

2

1

2n

2n+1
∑

k=0

(−1)k+1(2k − 1)
B2k

(2k)!

B4n+2−2k

(4n + 2 − 2k)!

−2
∞

∑

k=1

1

k4n+1(e2πk − 1)
− π

2n

∞
∑

k=1

1

k4n sinh2(πk)

ζ(4n + 1) =
(2π)4n+1

2

1

2n

2n+1
∑

k=1

(−1)k+1 B2k

(2k − 1)!

B4n+2−2k

(4n + 2 − 2k)!

− 1

n

∞
∑

k=1

(2πk + 2n)e2πk − 2n

k4n+1(e2kπ − 1)2
.
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5 Complementary formula

The result that we are looking for generalizing the PSLQ-discovered formula
for ζ(5) is

[1 + (−4)n − 24n+1]ζ(4n + 1)

= (2π)4n+1

n
∑

k=0

(−4)k+n B4k

(4k)!

B4n+2−4k

(4n + 2 − 4k)!
+

1

2
(2π)4n+1

2n+1
∑

k=0

(−4)k B2k

(2k)!

B4n+2−2k

(4n + 2 − 2k)!

+2[24n+1 − (−4)n]
∞

∑

k=1

1

k4n+1(e2kπ − 1)
+ 2

∞
∑

k=1

1

k4n+1(e2kπ + 1)

and is proved in [14].

Remark 5.1. Even though the preceding formulas go in a direction different
from the previous section and do not find the exact values of the zeta function
at all odd values, they seem to be the best available general results so far.

Acknowledgment. This research was partially supported financially by
the National Council for Scientific Research-Lebanon.

References
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