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Abstract

The selection of boundary conditions when restoring a finite 1D or 2D signal
has received a lot of interest in recent times. Dirichlet, periodic, reflective
and antireflective boundary conditions may be appropriate selection for some
problems, while wholly unsuitable for others. In this paper we show that, in
an Aristotelian approach to knowledge, when it is not known a priori which
boundary conditions should be chosen, by admitting our lack of information
it is possible to let the data itself determine them. We consider 1D and 2D
smoothness prior conditions. The application of this Aristotelian approach to
boundary conditions to the solution of linear discrete ill-posed problems with
Tikhonov regularization or truncated iterative methods is discussed. Computed
examples of deblurring and limited angle tomography showing the effectiveness
of Aristotelian boundary conditions are presented.

1 Introduction

The selection of suitable boundary conditions when restoring a finite signal
from a distorted specimen may play an important role in the success of the
outcome. The issue of which boundary conditions are most appropriate has
been addressed repeatedly in the image deblurring literature, where Dirichlet,
Neumann, peridic, reflective and antireflective boundary conditions have been
proposed; see, e.g., [3, 6] and references therein. It is clear from the examples
reported in the literature that it is always possible to find problems for which
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one type of boundary conditions work much better than the others. For ex-
ample, if the signal that we want to recover does not vanish on the boundary,
imposing Dirichlet boundary conditions may cause the computed solution to
show oscillatory behavior near the boundary. Similar misbehavior of the com-
puted solution can be observed with the other boundary conditions when used
inappropriately.

In this paper we consider the case in which we have no definite a priori knowl-
edge as to which type of boundary conditions might be most appropriate for
our problem. Instead of guessing which boundary conditions might be most
appropriate, or selecting the boundary conditions according to how much such
selection will simplify the computations, we acknowledge our “tabula rasa” state
and let our experience of the signal, i.e., the data itself, determine what is the
most likely behavior of the solution at the boundary. We call the boundary
conditions determined in this fashion Aristotelian boundary conditions because
we, like the Greek philosopher, assume that knowledge is a process guided by
experiences, built layer after layer starting from a clean slate. ' In this paper we
propose an approach to boundary condition selection that allows a great deal
of flexibility in terms of expressing the various degrees of knowledge, or lack
thereof, about the behavior of the solution at the boundary, and an algorithm
which is computationally efficient also for problems of large dimensions.

We remark that while the basic ideas behind Aristotelian boundary conditions
are essentially the same in one, two or three dimensional space, the technical de-
tails become more tedious in higher dimensions. Therefore we will first describe
the algorithm in one dimension, then explain how it should be modified for ap-
plication to higher dimensional problems. Furthermore, since a lot of the recent
discussions on the choice of boundary conditions has focused on the problem of
signal and image deblurring, we will also assume first that we want to recover
a signal x from a blurred, and possibly noisy copy b. After discretization we
have the linear system

b=Ax+e, x€R", b, eeR™, (1)

where the matrix A € R™*" is of ill-determined rank, that is, it has singular
values of different orders of magnitude close to zero. In order to keep the
amplified error components from dominating the computed solution, some form
of regularization is typically needed when solving (1). Here we consider only
two regularization methods. The first one, Tikhonov regularization, replaces
the solution of (1) with the solution of the minimization problem

min{|[b — Ax|[* + af| Lx|*}, (2)

where || - || denotes the Euclidean norm and L is a regularization operator which
defines a seminorm. The minimizer exists and is unique if ker(A4) Nker(L) =

L Aristotle’s position was the opposite of that of his teacher Plato, who regarded knowledge
as a trait innate in the human mind.
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{0}. In particular, if L € R™*™ is invertible, the problem (2) is well-posed.
The second method considered here is truncated iteration. Regularization by
truncated iteration consists of applying a few steps of an iterative method to
the linear system (1), or to its normal equations, stopping the iteration prior
to convergence to avoid the harmful effects of the amplified error components
on the computed solution. The use of smoothing preconditioners in connection
with truncated iteration may improve the quality of the computed solution. In
particular, assuming for simplicity that the matrix A is square and that the
matrix L in (2) is invertible, the solution by truncated iteration of the right-
preconditioned linear system

AL 'w=b, Lx=w, (3)

may be computationally more efficient than the solution of (1), see [2].

In this paper we will show how to express our a prior: knowledge, or lack
thereof, about the sought solution and its behavior at the boundary by means
of an invertible positive definite matrix L to be used as a regularization operator
for Tikhonov or as a right preconditioner in truncated iteration. The matrix L
may, for example, express the fact that the solution is smooth along a portion
of the boundary, without forcing any particular type of boundary conditions.
We will call the matrix L Aristotelian boundary preconditioner when used in
connection with iterative methods for linear systems.

The paper is organized as follows. In Section 2 we show how statistical inversion
provides the tools both for expressing various levels of uncertainty about the
behavior of the solution at the boundary and for having the data itself deter-
mine what this behavior should be. In Section 3 we describe how to construct
the matrix L in the one-dimensional model case. Section 4 describes its ex-
tension to higher dimensions. We also consider smoothness priors related to
structural information, and we present computed examples where Aristotelian
prior boundary conditions are used in the context of limited angle tomography.

2 Inverse problems, regularization and statistics

The construction of the smoothness prior with Aristotelian boundary condi-
tions is based on the Bayesian interpretation of regularization. Now we briefly
recall the basic concepts of the statistical theory of inverse problems. For a
comprehensive discussion of this topic, we refer to [4].

Assume that x € R™ represents a quantity we are interested in. Since we are
not sure about its value, we model it as a random variable. The randomness
expresses our degree of uncertainty, which in turn is encoded in its probability
distribution. We adopt the convention that a random variable is denoted by
a capital letter, X, and its realizations by lower case letters, x. Further, we



66 D. Calvetti, J. Kaipio, E. Somersalo

denote the probability density? of X by 7(x).

Consider the linear inverse problem (1) of estimating x from the noisy data b.
Assume that prior to the measurement of b, we have some information about
the possible distribution of the unknown x. This information is encoded in
the prior density of the corresponding random variable X, denoted by mp,(x).
Furthermore, assume that the error e is a realization of a noise process E whose
probability density is mhoise(€). Then, assuming for the moment that X = x is
fixed, the equation (1) implies that b is a realization of a random variable B
whose probability density must be

m(b | X) = Thoise(b — AX). (4)

The conditional density (4) is known as the likelihood density. The joint prob-
ability density of the variables B and X is then

77'(}(7 b) = 7T(b | X)Wpr(x) = Wnoise(b - Ax)ﬂ—pr (X)

Bayes formula states that the posterior density of x is proportional to the joint
probability density, that is,

(x| b) X Toise(b — AX) 7 (X).

A particular but very common case is when the variables X and E are indepen-
dent and Gaussian. Assume, for simplicity, that

E ~ N(0,0%I), X ~N(0,T),

where [ is the m x m identity matrix and I' € R™*"™ is a symmetric positive
definite matrix. Then Bayes formula implies that the posterior density is, up to
a norming constant,

o b) oxexp (5 { oI~ x| 4 x7T x| ). )

Let I'"!' = vLTL. Such decomposition exists because I' is symmetric positive
definite and therefore admits a Cholesky factorization. Then the mazimum a
posteriori estimate of x, xpap, is the maximizer of the posterior density (5) or,
equivalently,

xmap = argmin{|[b — Ax||® + o%v||Lx|]*}.

Hence the regularization matrix L for Tikhonov regularization corresponds to
the covariance matrix of the prior probability density. Thus this matrix reflects
our prior information about the unknown. The regularization parameter a in
(2) is related to the statistical parameters via o = o2y, giving insight of its
statistical interpretation in terms of the noise level and scaling of the prior
covariance. The determination of « is usually based on discrepancy principle,

2To avoid measure theoretic considerations, all probability densities are assumed to be
absolutely continuous with respect to the Lebesgue measure.
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while the statistical parameters can be estimated by hierarchical models. For
further discussion of these topics, see [4].

For the purposes of this article, the key observation is that the statistical ap-
proach gives us means of interpreting the regularization. Indeed, if L € R™*" ig
an invertible matrix appearing inside the Tikhonov functional (2) or as a pre-
conditioner in (3), the matrix B = LTL defines, up to a scaling constant, the
inverse of a covariance. Exploration of the corresponding prior density e.g. by
random draws, gives us a way to check if this matrix corresponds to what we
assume to be known a priori about the unknown x.

3 One dimensional smoothness prior

We begin this section by assuming that the desired solution is a smooth one-
dimensional signal f(¢) with support on the unit interval [0,1] and we denote
by x = [r1, 2, ...,7,]T its values at the points of a uniformly spaced grid.

Assuming that we believe a priori that f € C([0,1]) N C?(]0,1]), we seek to
construct a prior density of x that reflects this information. Observe that no
assumption whatsoever of the boundary conditions of f is made.

The natural starting point for a smoothness prior is to consider a finite difference

approximation of f”(t) at the interior points to,...,t,—1. We have
f”(tg) 1 -2 1 T1

f"(ts) 1 1 -2 1 o 1
I (tn-1) 1 -2 1 T,

where h = 1/(n—1). This approximation gives rise to a candidate prior density,
which we refer to as smoothness preprior, defined by

1 1
Tpre(X) o< exp <2a||Lx||2> = exp <2axTBx> ,

where
B=LTLeR™" LeRM 2

We observe that since
rank (B) =n — 2,

Tpre 18 NOt a proper Gaussian probability density. The rank deficiency of B
alone does not prevent from using L as regularizing matrix, although care must
be taken if the null spaces of L and A coincide. For certain techniques such as
right priorconditioning ([2]), the invertibility of B is essential. Consequently,
we want to augment L in such a manner that the resulting prior is a proper
density.
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Figure 1: Six random draws from the prior 7p (left) and w5 (right) with the
parameter value o = 1. The draws are generated by solving the system Lx = w,
L = Lp or L = L, where w is a white noise Gaussian random draw. The
standard deviations of the elements are plotted as a bold curve.

A straightforward way of augmenting L so as to obtain an invertible n x n matrix
is to assume boundary conditions at t = 0 and ¢ = 1, e.g., Dirichlet, Neumann,
Robin or reflecting boundary conditions. Another way is to assume that f
admits a C%-extension outside the interval [0, 1] and the extension vanishes in
the extended grid. Such an assumption leads naturally to the extension of L as

—2 1
1 -2 1 1 -2 1
1 2 1 1 -2 1
L= — =Lp
1 -2 1 1 -2 1
I 1 -2

The corresponding probability density is
1 2
T (X) o exp —§a||LDxH )

which is a proper density since Lp, and consequently LT Lp, is invertible.

To understand which prior assumptions are implied by this extension of L, we
make few random draws from the resulting density. The random draws are
facilitated by the observation that if W is Gaussian white noise, i.e., W ~
N(0,1), then X = (y/aLp)~'W is distributed according to 7p. In Figure 1, six
independent random draws from this density are shown. The boundary values
are near zero, indicating that by augmenting L in this fashion, we have imposed
that the values of the solution at the boundary are small. To better understand
the relation between the matrix L and the constraint on the solution at the
boundary, consider the variances of individual components of X ~ 7. We have

(UD)j = E{ij} = (FD)jj7
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where the covariance matrix I'p is
I'p = [aLLp] .

The standard deviations (UD)], are plotted in Figure 1. It is clear from the plot
of op that the variance at the endpoints is much smaller than in the interior of
the interval. We are now going to relax the constraint at the boundary without
affecting the smoothness properties inside the interval.

The extension L. — Lp was based on some implicit assumptions about the
boundary values of f. We now analyze the dependence of the interior values on
the boundary values. We permute the entries of the vector = so that the interior
points come first, followed by the boundary points and we use the notation

X1 ] n—2

T
X =|T2,L3y...,Lpn—1,Lp,T =
[ 2,43, s bn—1y4Ln, 1] |: Xo 2

Accordingly, we partition the matrix L as

L=[L Ly|, Ly eR"*0=2) [, ¢ RP=2x2,
Observe that the block L; is invertible. The partition of L induces a partition
of B of the form

LTL, LTL B B

B=ITL — 141 id2 | _ 11 12|
[ L3Ly L3L, Ba1  Bao

Since the matrix L; is invertible, so is Bi;. If the boundary values of f and

thus the vector x5 were known, we could calculate the conditional probability

density of x; conditioned on this information using the preprior. From now on,

we assume that o = 1 in the preprior. We have
xTBx = XlTBuxl + XITBHXQ + x;nglxl + XQTBQQXQ
= (x1+ Bi{'Biaxa) " Bi1(x1 + By Biaxa) (7)
+ x5 (Baz — Bo1 By Bi2)xa.

Notice that since the last term in (7) does not depend on x1, it only affects the
norming constant in the exponential defining the preprior. The quantity

Biy = Boy — Bo1By' B1a

is the Schur complement of By;. In this setting, the matrix §11 vanishes. In
fact, from the relationship between the partition of B and that of L, we have
that

Boy — By B Biy = LY Ly — LY Ly [LT L] ' LT Ly = 0.
Consequently, the conditional distribution of X; conditioned on Xy = x5 is a
proper Gaussian density,

Wpre(xl | XQ) NN( — Bi1312X2, Bil)
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We recall that this density corresponds to the assumption that the Dirichlet
boundary values are known, while in reality, they should be treated as ran-
dom variables. Assume that the boundary values are Gaussian, with marginal
distribution

X2 ~ N(O7O)7

where C' € R?*2 is a symmetric positive definite matrix whose inverse has a

factorization of the form
C!'=KTK.

The marginal probability density of X5 is then
1 _ 1
mo(x2) o exp <—2ch 1X2) = exp <—2||KX2||2> .

By using the identity
m(x1,X2) = 7(x1|X2)7(x2), (8)

we can now define a proper prior probability density mp, as
Tpr(X) = Tpre(X1 | X2)mo(x2)

1
X exp (—2 [(X1 + BﬁleXQ)TBu (x1 + BﬂlBqu) + ||KX22})

— exp 1 [xT x2] B Bio X1
g 71 72 By1 By Bj'Bia +C7 ! X2 '
Furthermore, the matrix appearing above allows a factorization in terms of L,

Lo and K of the form

By Bia
Bs1 By Bj'Bia +C7!

[ LT, LTL,
| LTL, LTL,+ K"K

(L L[ L L
“lo K 0 K

] =L} La,
which, in turn, implies that
1 2
Wpr(x) X exp _§||LAX|| :

Note that
det(La) = det(Ly)det(K) # 0.

This is equivalent to assuming that we have an observation model of the form
X, = AX, + E, E ~ N(0,B; 1),

where
A= —B;'Bis



Aristotelian prior boundary conditions 71

is the discretization of an operator that continues the boundary values of a
differential equation inside the domain.

If the boundary values are independent Gaussian random variables with equal

variance, then
L1 o0 110
C“’[o 1]’ E="10 1]

Substituting the expression for L into the matrix L o and repermuting the entries
of the vector x so that the pixels appear in the natural ordering we have that

1/ 0
1 -2 1

Ly =

0 1/o |

The selection of the value of the parameter o can be done so that the variance
of the entries of the vector x is as uniform as possible. This can be achieved by
letting

0 = max (O’D>j,

1<j<n
where op is computed from the density 7p. In fact,
2 T -1
(JD)]’ = Var(Xj) = ([LDLD} )jj’
so denoting by e; the unit vector with the jth component equal to one,
2 T[T -1 -T2

(UD)], =e; [LHLp] e; =|Lp el
We choose j = [n/2], since the maximum variance occurs at the center of the
interval.

Figure 1 shows six random draws from the density mp,, as well as the standard
deviation of the components Xj, i.e., the square root of the diagonal of the
matrix [L;{L A} ~'. The random draws are generated using the same realizations
of the white noise as in Figure 1.

We now compare the effects of the matrices Lp and L with an example where
La and Lp are used as regularization operators for Tikhonov regularization.
To show how the matrix L performs as a Tikhonov penalty, we consider the
following deblurring problem. Let

1
bj :/ K(Sj,t)f(t)dt+6j7 ].S_]Sm,
0
where the kernel K is defined as

K(s,t) = c(s)s(1 — s)e_(t_s)z/mz7 w = 0.03,
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Figure 2: Tikhonov regularized solutions of the deblurring problem using the
regularization matrices Lp and La, respectively.

and the scaling function ¢ chosen so that max;cjo,1) K(s,t) = 1. The sampling
points are

sj=(—1)/(m—=1), m=40.

The problem is discretized by approximating

> K(sj to)zy,

(=1

1
n

/01 K(sj,t)f(t)dt =~

where the points t; and s; coincide, hence n = m = 40. The noise is assumed
to be Gaussian white noise,

E ~ N(0,74%I), v = 1% of max. of the noiseless signal.
To avoid the “inverse crime” (see [4]) of computing the data using the same
discretization grid in which the inverse problem is solved, we generate the data

using a uniformly spaced grid of 100 discretization points. The inverse problem
is solved using the Tikhonov regularization scheme, i.e., by solving

Xq = argmin(||b — Ax|* + aHLxHQ),

where either L = Lp or L = L. The parameter o > 0 in both cases is selected
using the Morozov discrepancy principle, i.e., from the condition

b — Axa|* = E{|E[*} = my*.

The results are shown in Figure 2. The improvements near the boundaries
obtained when using L4 are clearly visible.
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4 Generalizations to higher dimensions

In this section we extend the discussion to two dimensions. The extension is
done recursively, and thus can be extended to higher dimensions in a similar
manner. We consider two cases, a homogeneous smoothness prior and a struc-
tural smoothness prior.

4.1 Homogeneous smoothness prior

We assume that we are seeking a pixelized image supported on the unit square
D =10,1]x [0,1], and x = [21,...,7,]" is the value of the solution at appropri-
ately numbered pixels. We classify the pixels into three groups, interior pizels,
boundary pizels and corner pizels. To simplify the presentation, assume that
the entries of x are ordered so that the first n; entries are the interior pixel
values, the following no entries correspond to boundary pixels, and, finally, the
last ng = 4 entries are the corner values. We use the notation

X1 nq
X = X9 ng , N1+ng+n3g=n.
X3 ns

As in the previous section, we assume second order smoothness prior. Using the
five point mask

0 1 0
1 -4 1], (9)
0 1 0

we write a second order smoothness prior density,
1
m1(X) o exp <—2||L1x||2> , Ly e R~

Clearly, m; does not define a proper density. As in the one dimensional case, we
augment the matrix L, by passing through a conditional density which assumes
that we know the boundary values. Consider the ny pixels x5 and define the

smoothness prior
X

where the matrix Lo is assembled as a one-dimensional second order derivative
along the edges using the mask

2
1

1 -2 1].

Finally, we define a Gaussian density for the independent identically distributed
corner values,

1
m3(X3) X exp <—252||L3x|2) . L3 =al € R™Xns,
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We define the prior density mp,, as
’/Tpr(X) = ’/Tl(Xl | XQ,XQ)’ITQ(XQ | X3)7T3(X3).

Before fixing the parameters a and (, we consider the structure of the prior
thus obtained. By applying recursively the reasoning of the previous section,
we first introduce the partitioning

Ly = [L11 L1z Lys], L1 € R™*™, Lip € RM*™2 Ly5 € R™M*"8,
where det (LH) # 0. We then partition
Ly = [Loz Lag], Lga € R"X"2, Lyg € R""3,

where det(La2) # 0. With these notations, the prior density can be written in
the form

1 Ly L Lis
Tpr(X) o exp (_2|LAX||2> , La= 0 [Loo %ng eR™ ™ (10)
0 0 L3

and since
det (LA) = det(Lll)det (ﬂng)det(ﬂLg) # 0,

it follows that m,, is a proper density. Consider now the selection of the pa-
rameters « and 3. The guiding principle that we adopt here is that the pixel
covariances should be as equal as possible in the region of interest. The selec-
tion is done recursively from bottom to top. Assume for the time being that
0 is fixed. Augment first the matrix Lo to a (ng + ns) x (ng + ng) matrix by
extending the boundary values by zeroes along the extensions of the boundary
edges. This corresponds to the matrix Lp in the one-dimensional case. We
denote this extended matrix by Ly p, and we define

2
1
m2,p(X2,X3) o exp <—252 Ly p [ ;2), ]H ) , det(Lap) #0.

The covariance matrix of this density is

Lop = (BQL;F,DLQ,D)f

and the variance of a single pixel value X; of a vector that is distributed ac-
cording to ma p is

Lo
var(X;) = (T2p) , = g Lo bes (1)
where e; € R is a unit vector with the jth component equal to one. The

maximum variance occurs at the middle of the boundary edge. We assume
that j is fixed to yield this maximum variance. We now choose the value of
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«a in L3 = al so that the variance is as uniform as possible over the whole
domain. In particular, to allow the variance of the corner pixels to be equal to
the maximum variance in the interior, we choose

1
o232 = var(X;),
or
1
a=—"-".
1Lz el

Hence, « does not depend on 3. Having fixed «, we select 8 by moving hier-
archically to higher dimensional densities. To this end, we augment first the
matrix L; to a n X n invertible matrix by extending the image by zeros outside
D and using the mask (9). Call this matrix L; p, and define

1
1.0(x) o exp (—2|L1’DX||2> .

The maximum variance of pixel values distributed according to this distribution
is attained in the center of the image. If k is an index to such pixel, the maximum
variance is
2 —T_ 2
01D = ||L1,Dek|| .

By imposing that the maximum variance (11) at boundary pixes is equal to the
variance above, we arrive at the simple relation

1, _ 1L pe;ll
—|IL; el = ||IL7 Ser|?, or = —=

ﬁ2” 2,D ]” | 1,D k| B I\L;Eekll

Notice that the calculation of the maximum variance is numerically light due
to the structure of the matrices L;p. Figure 3 shows the plots of the standard
deviation surfaces obtained using the matrices Lo p and Lo 4. We demonstrate
the use of the smoothness prior for solving a limited angle tomography problem.
The image D represents a cross section of a object with smoothly varying mass
absorption. The object is illuminated with parallel beam X-ray source, the
projection angles being constrained in a sector of size w/3. Hence, we have only
one third of the full sinogram data available. The measurement configuration
is represented schematically in Figure 4. The number of illumination directions
is 50 and the number of detectors along a line perpendicular to the rays is
also 50. We generate the data by dividing the true image into 80 x 80 pixels.
To avoid the “inverse crime” of solving the inverse problem on the same grid
where the data were produced, the inverse problem is solved on a 50 x 50 grid.
After having computed the noiseless data, we add Gaussian white noise with
standard deviation 0.1% of the maximum noiseless signal. For details about
how to construct the forward map A; see [4]. We solve the problem by using
the idea of priorconditioning proposed in [2]. We rewrite the problem in the
form (3), where L is the structural prior matrix formed above. The linear
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Figure 3: The standard deviations of the pixels according to the priors m; p and
Tpr, respectively. In this example, the image size is 30 x 30.

system AL~'w = b is solved approximately by using the truncated conjugate
gradient method for the normal equation (CGLS); see e.g. [1] for details. The
CGLS is suited well for tomography problems since the matrix AT A appearing
in the normal equation corresponds to the unfiltered backprojection; see [7].
Figure 5 shows the priorconditioned CGLS solutions using the matrix Lp and
L, respectively, as priorconditioners. The iterations are truncated after 35
steps. We do not discuss here the optimal truncation criterion, which could be
based on the prior statistics; see [2]. The reconstruction results demonstrate
that the Aristotelian boundary conditions not only help resolving the boundary
values, but also improve the reconstruction in the interior of the domain, since
the incorrect boundary conditions inherent to Lp are compensated with ringing
artifacts.

4.2 Structural smoothness prior

In the previous sections we assumed the solution to be smooth in the interior
of the domain. While this assumption is feasible in many cases, there are also
examples where the solution displays some clear and known features in its inte-
rior. In such cases it is desirable to respect the structure of the problem, while
still allowing the data to determine the boundary conditions. We call densities
which respect features of the solution structural smoothness prior densities. In
[5], a procedure for constructing such prior densities is proposed, and the issue
is further developed in [4]. Here we show how the Aristotelian boundary condi-
tions work together with structural priors. Consider the two-dimensional prior
Tpr constructed in the previous section. Assume that we know a priori that the
image contains a shape whose boundary curve is known, but that the intensity
distribution of the image is unknown. Further, assume that we know that the
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Detector /

Sources

20 20

Figure 4: The measurement configuration and the true density. The projection
angle ranges over an opening of 7/3 as indicated in the picture.

Figure 5: The priorconditioned CGLS solutions with smoothness priors using
Lp (left) and La (right) as the priorconditioner. The number of iterations is
35.
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Figure 6: The shape @Q C D.

image is smooth inside and outside the boundary curve, and that the values
inside and outside are not strongly coupled. Such information can be available
e.g. when different imaging modalities are combined in biomedical applications.
Let @ C D be a set that represents the shape. We divide the pixels in the
domain into two cliques, C; and Cs, according to whether the centerpoint of
the pixel is in @ or not, and indicate this relation by writing z; € Cj, j = 1, 2.
An example of such a structure is plotted in Figure 6. Assume now that we
have constructed the differencing operator L and that we want to incorporate
the structural information. Consider a pixel with one of its four neighbors be-
longing to a clique different from its own while the others are in the same one.
Assuming that the neighbor in the different clique is on the right, we make a
row replacement in L that corresponds to replacing the mask (9) by

0 1 0 0 1 0
1 4 1|—-|1 -3—¢ ¢
0 1 0 0 1 0

Here, 0 < € < 1 is the coupling constant that controls how strongly the values
inside @) and outside are correlated. Similarly, when several neighbors are in the
different clique, the unit entries in (9) are replaced by ¢ and the sum of elements
is adjusted to zero. This structural change can be done effectively as follows.
Assume that the elements of x are permuted so that the first n; elements are
in C1, the last ng in Cs. We partition L accordingly:

Ly — Ly Lz | m
L1 Loy | no -’

The structural prior is then obtained from the following simple steps.
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>

Figure 7: The shape ) C D corresponding to the structural information and
three random draws from the structural prior with Aristotelian boundary con-
dition.

1. Calculate the vectors
d; = column sum of Lis € R™, ds = column sum of Ly; € R"?,

and replace
LA — LA + (1 — s)dlag[dl, dg]

2. Replace the off-diagonal blocks

Lip — eL1a, Loy — €Llo.

In Figure 7 we display three random draws of the prior density corresponding to
the structural matrix thus defined. The coupling parameter here is ¢ = 0.01, and
the image size is 50 x 50. The set @ is clearly visible in these draws. However,
the structural prior does not force jumps across the boundary. Let us mention
that the structural prior constructed above can be seen as an approximation of
the diffusion operator V - DV, where the diffusion matrix D = D(x) € R?*? is
such that the diffusion across the boundary of @ is weak. Such an interpretation
brings the method very close to ideas of using anisotropic nonlinear diffusion
for image processing; see [8]. We demonstrate the use of the structural prior
with a limited angle tomography example analogous to the one described in the
previous subsection. The true mass absorption density is shown in Figure 8.
In this example, D could be a cross section of a pillar containing a cavity (e.g.
water pipe, a casing of electric wires etc.) of known shape, while the density
distribution is unkown and of interest. Figure 9 shows the outcome based on
truncated CGLS with the structural smoothness preconditioner, either with or
without the Aristotelian boundary conditions. The number of CGLS iterations
in this example is 20. A remarkable feature of using the structural prior is
the lack of the shadow artifacts that are typical for limited angle tomography
reconstructions when no prior information is available or used. In fact, the
discontinuities along the structure boundaries are well resolved even in the pro-
jection directions, and the smooth object in the corner is also clearly localized.
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Figure 8: The measurement configuration and the true structural density.

Figure 9: The priorconditioned CGLS solutions with structural smoothness
priors based on a structural modification of Lp (left) and La (right). The
number of iterations is 20.
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